FORMER MATHER AIR FORCE BASE INSTALLATION RESTORATION PROGRAM

BUILDING 4260 VADOSE ZONE SITE INSPECTION REPORT AND ENGINEERING EVALUATION/COST ANALYSIS

DRAFT

Prepared for

AFCEC/CIBW Attn: Roy Willis 2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853

Prepared by:

URS Group, Inc. 2020 L Street, Suite 400 Sacramento, California 95811

May 2018

NOTICE

This report was prepared by the staff of URS Group, Inc. (URS) under the supervision of registered professionals. The data interpretation, conclusions, and recommendations presented in the report were governed by URS' experience and professional judgment. This report has been prepared based on data current at the time of preparation. Assumptions based on these data, although believed reasonable and appropriate based on the data provided herein, may not prove to be true in the future as new data are collected. The conclusions and recommendations of URS are conditioned upon these assumptions.

TABLE OF CONTENTS

Page

1.0	INTF	RODUCTION	1-7
	1.1	OBJECTIVES	1-7
	1.2	DATA COLLECTION OBJECTIVES	1-7
	1.3	REPORT ORGANIZATION	1-8
2.0		KGROUND AND PREVIOUS INVESTIGATIONS	
	2.1	SITE DESCRIPTION AND HISTORY	
	2.2	PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS	
		2.2.1 Screening Criteria for Assessing Impact to Groundwater	2-2
3.0	FIEL	D INVESTIGATION OVERVIEW	3-1
	3.1	FIELD CHARACTERIZATION OBJECTIVES	
	3.2	HEALTH AND SAFETY	
	3.3	PRE-FIELDWORK ACTIVITIES	
		3.3.1 Permitting/Notifications/Utility Clearance	
		3.3.2 Security and Site Control	
	3.4	MOBILIZATION AND FIELD PREPARATION	
	3.5	FIELD ACTIVITIES	
	0.0	3.5.1 Field Logs	
		3.5.2 Installation of Sub-Slab Soil Vapor Probes	
		3.5.3 Indoor Air and Ambient Air Sampling	
		3.5.4 Sub-Slab Vapor Sampling	
		3.5.5 Borehole Drilling and Sample Collection for Lithologic Description	
		3.5.6 Vapor Well Installation	
		3.5.7 SVM Stabilization and Water Level Monitoring	
		3.5.8 SVM Vapor Sampling	
	3.6	CUTTINGS AND WASTEWATER REMOVAL	
	3.7	DEMOBILIZATION AND SITE RESTORATION	
	3.8	SURVEYING	
	3.9	FIELD SAMPLING SUMMARY	
4.0		ESTIGATION RESULTS	
	4.1	REGIONAL GEOLOGY AND HYDROGEOLOGY	
	4.2	GEOLOGIC RESULTS	
	4.3	INDOOR AIR SAMPLE RESULTS	
	4.4	SOIL VAPOR SAMPLE AND PERCHED WATER RESULTS	
	4.5	VADOSE ZONE MODELING	4-4
	4.6	CONCLUSIONS	
	4.7	RECOMMENDATIONS	4-5
5.0	ENG	INEERING EVALUATION AND COST ANALYSIS	5-1
	5.1	JUSTIFICATION OF SVE REMOVAL ACTION	
	5.2	REMOVAL ACTION OBJECTIVES	
	5.3	ARARS	
	0.0	5.3.1 Chemical-Specific ARARs	
		5.3.2 Action-Specific ARARs	
		5.3.3 Location-Specific ARARs	
		r	

6.0	REF	ERENCES	6-1
	5.6	IMPLEMENTATION PLAN FOR SVE REMOVAL ACTION	5-7
		5.5.2 Comparison of Alternatives	
		5.5.1 Criteria for Comparison of Alternatives	5-5
	5.5	ANALYSIS OF REMOVAL ACTION ALTERNATIVES	
	5.4	IDENTIFICATION OF REMOVAL ACTION ALTERNATIVES	5-5

APPENDICES

Appendix A	Historical Data

Appendix B Field Logs

- Appendix C Lithologic and Well Construction Logs
- Appendix D Data Summary Analysis and Analytical Results
- Appendix E VLEACH Modeling
- Appendix F B4260 SVE System Design and Operations and Maintenance Plan

LIST OF TABLES

- Table 3-1Soil Vapor Monitoring Well Construction Summary
- Table 3-2Sampling Matrix
- Table 4-1TCE Results in Soil Vapor and Perched Water
- Table 5-1
 Cost Breakdown for Alternative 2 Soil Vapor Extraction

LIST OF FIGURES

- Figure 1-1 Site Location Map, Site B4260
- Figure 1-2 Site Map, B4260
- Figure 3-1 Indoor Air, Sub-Slab, and Ambient Air Sample Location Map, Building #3
- Figure 4-1 Generalized Hydrologic, Hydrogeologic, and Geologic Units
- Figure 4-2 Geologic Cross-Section A-A, B4260
- Figure 4-3Baseline Sampling Results, B4260
- Figure 4-4 Thiessen Polygon Map, B4260
- Figure 4-5 TCE Leachate Concentrations–VLEACH Modeling

ACRONYMS AND ABBREVIATIONS

µg/L	micrograms per liter
1,1,1-TCA	1,1,1-trichloroethane
A/WT	Unit A water-table unit
ACL	aquifer cleanup level
AFCEC	Air Force Civil Engineer Center
ARAR	applicable or relevant and appropriate requirement
AWS	air/water separator
B4260	Building 4260
bgs	below ground surface
CCR	California Code of Regulations
cis-1,2-DCE	cis-1,2-dichloroethene
cm/s	centimeters
cm ₂	centimeter squared
CTCL	carbon tetrachloride
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
DTSC	California Department of Toxic Substances Control
EE/CA	engineering evaluation and cost analysis
ESD	Explanation of Significant Differences
GCLE	groundwater cleanup level equivalent
HASP	Health and Safety Plan
HHRA	human health risk assessment
IC	institutional control
IDW	investigation-derived waste
in. Hg	inches of mercury
LUC	land use covenant
NCP	National Contingency Plan
Mather	former Mather Air Force Base
mm Hg	millimeters of mercury
mph	miles per hour
O&M	operations and monitoring
OWS	oil-water separator

ACRONYMS AND ABBREVIATIONS (Continued)

PCE	tetrachloroethene
PID	photoionization detector
ppmv	part per million by volume
PVC	polyvinyl chloride
ROD	Record of Decision
SI	site inspection
SLUC	State Land Use Covenant
SMAQMD	Sacramento Metropolitan Air Quality Management District
SVE	soil vapor extraction
SVM	soil vapor monitoring
t-1,2-DCE	trans-1,2-Dichloroethene
TCE	trichloroethene
USEPA	U.S. Environmental Protection Agency
VI	vapor intrusion
VOC	volatile organic compound
WIMS Work plan	Work Information Management System remedial investigation work plan

1.0 INTRODUCTION

This report documents the results of field activities that were conducted to characterize the vadose zone soil gas volatile organic compound (VOC) contamination at Building 4260 (B4260), identified in the Air Force's Work Information Management System (WIMS) as WL509, located at the former Mather Air Force Base (Mather) (Figures 1-1 and 1-2), and to select a non-time-critical removal action to address this vadose zone contamination that has the potential to affect groundwater quality at levels exceeding the Mather aquifer cleanup levels (ACLs). This report was prepared by URS Group, Incorporated, under contract FA8903-16-D-0029, task order number 0008, on behalf of the Air Force Civil Engineer Center (AFCEC).

1.1 Objectives

This report includes a site inspection (SI) report, an engineering evaluation and cost analysis (EE/CA), and a soil vapor extraction (SVE) system design and operations and monitoring (O&M) plan. Investigative activities that are described in the SI report were conducted in accordance with the 2017 remedial investigation work plan (2017 work plan) (URS 2017a). The objectives of these documents are described next.

The objectives of the SI report are to:

- present the results of indoor air sampling that was conducted to produce data in support of the human health risk assessment (HHRA; URS, 2017b);
- summarize the final HHRA (URS, 2017b), which used the indoor air sampling results to evaluate the potential health risk to current occupants of the office space on the southern end of Building 4260 (the hangar) (Building #3 in Figure 1-2); and
- present the results of a soil vapor investigation conducted beneath and in the immediate vicinity of the southeastern corner of Building 4260, to assess the extent of vadose zone contamination near soil vapor monitoring (SVM) well 59-PW-12 and evaluate whether vadose zone contamination has the potential to affect groundwater.

The objectives of the EE/CA are to:

- evaluate removal action alternatives to remediate the vadose zone contamination at B4260; and
- select a vadose zone remedy to be implemented at B4260.

The objectives of the SVE design and O&M plan are to:

- present the design of the SVE well proposed for the removal action and required changes to the exisiting Site 59 SVE system; and
- describe the proposed monitoring program for SVE operations.

1.2 Data Collection Objectives

The objectives for data collected during the SI were to:

• determine whether vadose zone soil vapor VOC concentrations present an unacceptable risk to building occupants via the vapor intrusion pathway;

- determine whether vadose zone soil vapor VOCs have the potential to affect groundwater quality at concentrations greater than ACLs, and if the impact would be expected to extend the time and cost to remediate groundwater in the vicinity of the site; and
- provide sufficient data to evaluate the extent of the soil vapor plume and design a remedy to address subsurface contamination in the vadose zone.

The 2017 work plan provides the rationale and decision-making process as well as the screening criteria that were used to assess risks to human health and groundwater.

1.3 Report Organization

This report is organized as follows:

- Section 1.0 explains the overall objectives.
- Section 2.0 presents the description and history of B4260.
- Section 3.0 describes the work performed to construct soil vapor wells and sub-slab vapor probes, conduct indoor air sampling, and conduct baseline soil vapor sampling.
- Section 4.0 discusses the results and conclusions of the indoor air sampling event and the vadose zone investigation, and suggests a recommendation to conduct a non-time-critical removal action to address vadose zone contamination.
- Section 5.0 presents the selection and evaluation of the removal action alternatives.
- Section 6.0 lists references for the information cited in this report.

This document also includes the following appendices:

- Appendix A provides historical information.
- Appendix B provides the field logs associated with the indoor air sampling event and the baseline soil vapor monitoring event.
- Appendix C provides the lithologic and well construction logs for the new wells and sub-slab vapor probes.
- Appendix D provides the laboratory analytical data for the indoor air sampling event and the baseline soil vapor monitoring event, as well as the associated data summary analyses for each event.
- Appendix E provides the VLEACH modeling data.
- Appendix F provides a copy of the *Building 4260 SVE System Design and Operations and Maintenance Plan.*

2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS

2.1 Site Description and History

B4260 is the contaminated vadose zone in the vicinity of SVM well 59-PW-12, an area located near the southeastern corner of Building 4260 (B4260) at Mather. The site includes B4260 and the areas immediately south and east of this building.

The B4260 source area was identified during sampling activities to further delineate the boundaries of the Site 59 soil vapor plume, which was associated with an SVE site west of B4260. The source area of Site 59 was the former oil-water separator (OWS) 4251 and wash rack, shown in Figure 1-2. The soil vapor wells associated with Site 59 were decommissioned in 2017, but the SVE system and the associated piping, shown in Figure 1-2, were left in place so that SVE could be implemented easily at B4260, if determined to be appropriate.

B4260 was previously known as Site 59b. Use of the Site 59b nomenclature occurred between approximately 2015 and 2017. When the source area near 59-PW-12 was first identified, the Air Force proposed to conduct SVE as part of the selected remedy for Site 59. The OWS source area at Site 59 was referred to at that time as Site 59a, and the B4260 source area was referred to as Site 59b. It was later agreed that the new source area would be handled as a separate site, and the site was designated as Building 4260, or B4260. The new site was assigned a WIMS number (Air Force Site identification number) of WL509.

B4260 currently serves as a commercial aircraft maintenance hangar for Mather Aviation, which occupies the central and southern sections of the building, and Intel Corporation, which occupies the northeastern section of the building. This building was constructed in 1954 and originally was used for aircraft repair and maintenance.

B4260's history—previous investigations (prior to 2017), geology, and hydrogeology—are detailed in the 2017 work plan. A lithologic cross-section is provided in Section 4.0.

The locations of the B4260 SVM wells (59-PW-05 through 59-PW-17) are shown in Figure 1-2. This system of wells includes 13 well clusters and 38 soil vapor wells. SVM wells 59-PW-05 through 59-PW-13 were installed between 2009 and 2015 as part of the Site 59 delineation activities; 59-PW-14 through 59-PW-17 were installed in 2017 as part of B4260 delineation activities, which are discussed in Sections 3.0 and 4.0 of this report. The source area is believed to be located in the vicinity of 59-PW-12 at a relatively shallow depth, approximately 10 feet below ground surface (bgs); 59-PW-05 and 59-PW-06 are believed to represent the transition area between the Site 59 and B4260 source areas. The historical analytical results for the primary VOCs detected in soil vapor samples between 2009 and 2015 are shown in Table A-1 in Appendix A.

At present, the source of vadose zone contamination is unknown but is suspected to be associated with the storm drain line located west of 59-PW-12 (Figure 1-2). Four storm drain lines run in a north–south direction through the hangar and were designed to capture spills and stormwater collected from the roof. Two storm drain lines would have collected liquids from the northern quarter of the building and transported the fluid by gravity to the north; the two other storm drain lines would have collected spills from the remainder of the hangar and transported them by gravity to the south. It is believed that all of the floor drain inlets, with the exception of the drain inlet located in the northwest corner of the building, were plugged when the property was transferred to Sacramento County.

2.2 Previous Investigations and Remedial Actions

The previous investigations conducted at B4260 primarily include the well installation activities discussed in Section 2.1 and the associated soil vapor sampling data shown in Table A-1 in Appendix A. As shown in Table A-1, TCE is the predominant soil vapor VOC at B4260 and was detected above its groundwater cleanup level equivalent (GCLE) in 14 out of 21 soil vapor wells during previous investigations. Cis-1,2-dichloroethene (cis-1,2-DCE) was detected in two soil vapor wells above its GCLE, and carbon tetrachloride was detected in one well above its GCLE. The highest exceedances were at well 59-PW-12A, where TCE and cis-1,2-DCE were detected at 160 and 14 parts per million by volume (ppmv), respectively.

No known removal actions have been conducted for this site; however, SVE was successfully implemented at other vadose zone sites at Mather under the *Final Superfund Record of Decision, Soil Operable Unit Sites and Groundwater Operable Unit Plumes* (1996 ROD; AFBCA 1996), including at Site 59, the site west of B4260.

2.2.1 Screening Criteria for Assessing Impact to Groundwater

The groundwater cleanup level equivalent (GCLE) is a numerical value that has been used at Mather as a conservative screening tool for comparison to soil vapor concentrations data, to determine whether soil vapor has the potential to affect groundwater at concentrations above the ACL. The GCLE calculation determines for each contaminant of interest the soil vapor concentration that would be in equilibrium with the aqueous phase (i.e., soil moisture) with an aqueous concentration of exactly the ACL. Actual soil vapor sample concentrations from the site then are compared to the GCLEs, and those with lower concentrations are determined to be unable to cause groundwater to exceed the ACL, even if pore moisture in equilibrium with that soil vapor or the soil vapor itself was to migrate to the water table without dilution. For soil vapor samples with one or more GCLE concentration exceedances, consideration of environmental attenuation factors is used to predict whether the contaminants at that location could affect groundwater at concentrations above one ACL.

The equivalent soil vapor concentrations are calculated assuming equilibrium partitioning between the vapor phase and aqueous phase of the contaminant at 20 degrees Celsius, using the following equation:

$$C_a = \frac{24.055C_wH}{MW}$$

Where:

 C_{w} is the soil water (aqueous phase) concentration ($\mu g/L$), equal to the ACL for each contaminant considered

C_a is the equivalent soil vapor concentration (ppmv)

MW is the molecular weight of the contaminant compound (grams per mole)

H is the Henry's Law constant for the contaminant compound (unitless)

The following GCLE soil vapor concentrations are provided for TCE and cis-1,2-DCE, the primary soil vapor VOCs, with their associated ACLs (URS 2015):

Cont	tam	Aquifer Cleanup Level inant (µg/L)	GCLE Soil Vapor Concentration (ppmv)
TCE		5	0.35
cis-1,2-DCE	2	6	0.2
Notes:			
µg/L	=	micrograms per liter	
cis-1,2-DCE	=	cis-1,2-dichlroethene	
GCLE	=	groundwater cleanup level soil vapor equivalent	
ppmv	=	parts per million by volume	
TCE	=	trichloroethene	

If the measured soil vapor concentration is less than the calculated GCLE soil vapor concentration (C_a in the above equation), the residual contamination associated with that sample will not affect the groundwater above the ACL, and no further assessment is necessary. The GCLE is a conservative screening tool and has the potential to over-estimate impact on groundwater. More rigorous models may therefore be employed if the GCLE is exceeded and further assessment is appropriate.

This page intentionally left blank

3.0 FIELD INVESTIGATION OVERVIEW

Field investigation activities were performed between January 2017 and February 2018. The following subsections describe the field characterization objectives, field sampling activities, and methods.

3.1 Field Characterization Objectives

The objectives of the field characterization activities were to:

- conduct indoor air sampling within B4260 to produce data in support of an HHRA, to evaluate the potential health risk to current occupants of the office space in Building #3; and
- conduct a soil vapor investigation beneath and within approximately 150 feet of 59-PW-12, to assess the vertical and lateral extent of vadose zone contamination, and to assess whether it may affect groundwater quality.

The rationale for selection of the indoor air sample locations and the SVM well locations is presented in the 2017 work plan, as is the selection process for the screening levels used to evaluate the data.

All work was conducted in accordance with the 2017 work plan; the indoor air study also was conducted in accordance with the California Department of Toxic Substances Control's (DTSC) *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (Vapor Intrusion Guidance; DTSC 2011). The U.S. Environmental Protection Agency (USEPA) 2015 vapor intrusion (VI) guidance, the *Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway for Subsurface Vapor Sources to Indoor Air* (USEPA 2015), also is referenced, as appropriate.

3.2 Health and Safety

All field activities performed under the 2017 work plan adhered to the guidelines and procedures outlined in the *Former Mather Air Force Base Health and Safety Plan for Long-Term Operations, Maintenance, and Monitoring* (HASP; URS 2010). A photoionization detector (PID) was used to screen soil cuttings and confirm that air in the work area breathing zone was below the safety criterion of 10 parts per million. A fire extinguisher and spill kit were at the site during drilling.

All personnel entering the work zone during field activities were given a safety orientation and asked to sign the HASP briefing form. The safety orientation outlined site-specific hazards and health and safety procedures. Daily tailgate safety meetings were held each morning, and all authorized personnel signed a tailgate safety briefing before any work began. Visitors who remained outside the exclusion zone were given a safety briefing and instructed to remain outside the delineated work area. All personnel were required to wear level D personal protective equipment.

3.3 **Pre-Fieldwork Activities**

3.3.1 Permitting/Notifications/Utility Clearance

This field investigation, conducted under the Comprehensive Environmental Response, Compensation, and Liability Act, is exempt from permitting. Therefore, no drilling or well installation permits were obtained from the Sacramento County Environmental Management Department. Sacramento County was notified in its capacity as property owner; the tenant, Mather Aviation was notified as one of the wells

was to be installed inside its hangar; and a Notification of Proposed Construction was submitted to the Federal Aviation Administration to notify them that work would be conducted on or near the taxiway.

The proposed work area and drilling locations were marked by AECOM field staff. Underground Service Alert and a private utility locator were contacted to clear all areas proposed for drilling. Before beginning drilling activities, each boring location was cleared to a depth of 5 feet bgs, using a vacuum truck equipped with an air knife to avoid hitting unknown utilities or other subsurface obstructions or hazards. No utilities or obstructions were encountered. The final well locations are shown in Figure 1-2.

No wastewater was generated during field activities.

3.3.2 Security and Site Control

The field crew implemented security and site control procedures to reduce the potential for uncontrolled migration of contaminants from the work areas and limit access by unauthorized personnel. Perimeter controls were employed around work areas, and all site personnel complied with the site control requirements of the HASP on entering the work zone. During nonworking periods, all equipment and materials were secured appropriately.

3.4 Mobilization and Field Preparation

Before the start of fieldwork, the following mobilization and field preparations were performed:

- Vehicles for field crews and all equipment and materials for initial activities were obtained.
- Applicable forms for health and safety, daily operations, and field logs were acquired per the 2017 work plan, for tasks such as lithologic logging.
- The PID was charged, calibrated, and tested each day.
- Field staff reviewed the 2017 work plan and the HASP.

All drilling equipment was transported to the site, including the drilling rig and support trucks. The drill rig, subsurface tools, and equipment were decontaminated before being brought onto the site.

One roll-off soil bin was delivered to the site, to store investigation-derived waste (IDW).

3.5 Field Activities

The field activities are discussed next. The results of the field and laboratory testing are discussed in Section 4.0.

3.5.1 Field Logs

Field staff maintained daily field logs and notes, recording all field activities and observations, problems encountered, and actions taken to solve problems. The field data sheets are provided in Appendix B, and the detailed lithologic logs with well construction details are provided in Appendix C.

3.5.2 Installation of Sub-Slab Soil Vapor Probes

The four sub-slab soil vapor probes were installed from 19 to 23 January 2017 at 59-SS-01 through 04 (Figure 3-1):

- 59-SS-01 was installed inside of a small room on the southeastern side of Building #3;
- 59-SS-02 through 04 were installed within the hangar to the north, the west, and the east of Building #3;
- 59-SS-04 was installed near an airline utility vault where the maximum PID survey reading was recorded in June 2015.

The thickness of the concrete floor was estimated to be 6 to 7 inches at SS-01 and 17 inches at all other locations. The construction logs for these probes are provided in Appendix C.

3.5.3 Indoor Air and Ambient Air Sampling

Indoor air and ambient air samples were collected on 26 January 2017 from indoor air sample locations IA-01 through IA-04 and ambient air sample locations AA-01 and AA-02, shown in Figure 3-1. One set of 8-hour samples was collected in accordance with the 2017 work plan. Sampling started at 8:09 a.m. and ended at 4:25 p.m. The average barometric pressure for the sample period was 30.43 inches of mercury (in. Hg), the predominant wind direction was north-northwest, and the wind speed ranged from calm to 13.8 miles per hour (mph), with gusts up to 20.7 mph. Hourly barometric pressure, wind direction, and wind speed data collected at Mather Airport are shown in Table B-3 in Appendix B. The sample results are presented in Section 4.0.

3.5.4 Sub-Slab Vapor Sampling

Sub-slab vapor samples were collected from the sub-slab soil vapor probes on 27 January 2017, at 59-SS-01 through 04, in accordance with the 2017 work plan. The average barometric pressure for the sampling period was 30.56 in. Hg. Hourly barometric pressure, wind direction, and wind speed data collected at Mather Airport are shown in Table B-3 in Appendix B. The sample results are presented in Section 4.0.

3.5.5 Borehole Drilling and Sample Collection for Lithologic Description

Sonic drilling equipment was used to drill the boreholes for the soil vapor monitoring wells. Sonic drilling was selected because of the likelihood of encountering coarse gravels and cobbles below the ground surface and to provide a continuous core for lithologic description.

The boreholes were 12 inches in diameter and terminated at depths ranging from 83.5 to 84.5 feet bgs. All boreholes were located within approximately 150 feet of 59-PW-12. SVM well 59-PW-14 is located approximately 10 feet east of 59-PW-12. The remaining SVM wells, 59-PW-15, 59-PW-16, and 59-PW-17 are approximately 150 feet southeast, east, and north of 59-PW-12. A continuous soil core was collected from inside the sonic sampling tool at each borehole. The soil encountered was described and classified by the on-site geologist, in accordance with the Unified Soil Classification System. The lithologies encountered are described in Section 4.0 of this report, as well as in the lithologic and well construction logs, provided in Appendix C.

Groundwater in the vicinity of Site 59 was expected at a depth of approximately 100 feet bgs. Perched water was encountered during drilling activities at depth intervals well above the water table.

3.5.6 Vapor Well Installation

Nested SVM wells were installed in the four boreholes. Three nested wells were installed in 59-PW-14 and five nested wells each were installed in 59-PW-15, -16, and -17. Each SVM well was constructed of 1-inch-diameter schedule 40 polyvinyl chloride (PVC) casing and a 2-foot length of 0.020-inch screen. The wells were screened at approximate depths of 8–10 feet, 20–22 feet, 30–32 feet, 60–62 feet, and 80–82 feet. The construction details for each well are shown in Table 3-1.

For each screen interval, 4 feet of #2/12 filter sand was placed in the borehole annulus at the depth of each screen, allowing 1 foot of filter sand to extend above the top of the screen and 1 foot below. One foot of #0/30 transition sand was placed above the #2/12 filter sand in the annulus above each screen. Dry granulated bentonite was placed above the #0/30 transition sand in the annulus above each screen in approximately one 6-inch lift, hydrated according to manufacturer recommendations, and left to fully hydrate for 10–15 minutes. After the granular bentonite was completely hydrated, bentonite chips were placed in the annulus and hydrated in 1-foot lifts up to 1 foot below the next screen interval. After construction of the shallowest well, cement grout, containing approximately 5 percent powdered bentonite to reduce shrinkage, was emplaced to within 0.5 feet of the ground surface, to allow installation of the flush-mounted, traffic-rated well vault.

Well construction procedures were based on recommendations from the Nebraska Grout Task Force's *In-Situ Study of Grout Materials 2001–2006 and 2007 Dye Tests* (Lackey et al. 2009) and information included in the *Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring* (Nielsen, 2005), as well as *Advisory—Active Soil Gas Investigations* (DTSC et al. 2015) and *Statewide Advisory: Sealing Materials for Water Wells, Monitoring Wells, Cathodic Protection Wells, and Geothermal Heat Exchange Wells* (DWR 2015).

3.5.7 SVM Stabilization and Water Level Monitoring

PID, oxygen, and carbon dioxide measurements were collected to assess stable well conditions before collecting soil vapor samples, in accordance with the *Advisory—Active Soil Gas Investigations* (DTSC et al. 2015). Stabilization monitoring activities began on 08 February 2017, approximately one week after the last SVM well was installed. A total of five stabilization monitoring events were conducted between 08 February and 16 May 2017 at the 18 new SVM wells and the 59-PW-12 well cluster. Monitoring was discontinued because parameters had stabilized in wells, though the presence of water and/or vacuum conditions precluded collection of vapor samples at up to eight of the new wells and the existing SVM well, 59-PW-12 (8 to 10). The data collected are shown in Table B-1 in Appendix B.

Water level readings were collected as part of 10 monitoring events from 01 March 2017 through 21 February 2017, to assess trends. The data are shown in Table B-2 in Appendix B. The data indicate that perched water primarily is found in wells located near the southeast quadrant of the building. Seven of the wells consistently had more than 1 foot of water in them for much of the monitoring period:

- 59-PW-13A (8 to 10)
- 59-PW-14 (30 to 32)
- 59-PW-14 (60 to 62)
- 59- PW-15 (8 to 10)
- 59-PW-16 (8 to 10)
- 59-PW-17 (8 to 10)
- 59-PW-17 (60 to 62)

The maximum height of water measured was 8.16 feet at 59-PW-14 (30–32) in April 2017. The minimum height of water generally occurred for all wells in November 2017, when water levels were collected during the baseline soil vapor sampling event, but the water levels rebounded by February 2018.

Originally, in 2017, the presence of water in the perched zones above the water table was believed to be associated with higher than average rainfall between October 2016 and April 2017. Although rainfall between November 2017 and February 2018 was below average, the water levels rebounded to approximately the same levels. Because water levels were lowest at the end of the dry season, in November 2017, rainfall is still believed to be the predominant cause of water in the wells. However, based on the water level data collected to date, it is expected that the wells will continue to experience standing water in the perched zones during the rainy season, even if rainfall is below average.

3.5.8 SVM Vapor Sampling

Baseline monitoring samples were collected from 38 SVM wells, which included the 20 existing wells associated with 59-PW-05 through 59-PW-13 and the 18 new wells associated with 59-PW-14 through 59-PW-17. The well names and screen intervals for these wells are provided below:

Existing	g Wells			New Wells	
59-PW-05	10-20		59-PW-14	30 to 32	W
59-PW-05	30-40		59-PW-14	60 to 62	W
59-PW-05	50-60		59-PW-14	80 to 82	
59-PW-05	70–90		59-PW-15	9 to 11	
59-PW-06	11-21		59-PW-15	20 to 22	
59-PW-06	31–41		59-PW-15	30 to 32	
59-PW-06	51-61		59-PW-15	60 to 62	
59-PW-06	70–90		59-PW-15	80 to 82	
59-PW-07	10-20		59-PW-16	8 to 10	w; no sg
59-PW-08	10-20		59-PW-16	20 to 22	
59-PW-09A	10-11		59-PW-16	30 to 32	
59-PW-09B	20-21		59-PW-16	60 to 62	
59-PW-10A	8-10		59-PW-16	80 to 82	
59-PW-10B	20-22		59-PW-17	8 to 10	
59-PW-11A	8-10		59-PW-17	20 to 22	
59-PW-11B	20-22		59-PW-17	30 to 32	
59-PW-12A	8-10		59-PW-17	60 to 62	W
59-PW-12B	20-22		59-PW-17	80 to 82	
59-PW-13A	8-10	W			
59-PW-13B	20-22				

Notes:

no sg = no soil gas sample was collected

w = perched water sample collected

The vapor samples were collected according to the Mather Vapor Sampling Standard Operating Procedures found in the 2017 work plan, which are consistent with those outlined in *Advisory—Active Soil Gas Investigations* (DTSC et al. 2015). The vapor sampling included ambient air leak testing that used isopropanol as a leak test compound. The following modifications were made to the soil gas sampling protocol at five of the wells to address the perched water:

- a. Measured and recorded depth to water and calculated water height.
- b. For wells with more than 1 foot of perched water, measured and recorded pH, temp., and conductivity before starting and during the purge period, following typical groundwater purge procedures.
- c. Purged three well volumes or until the parameters stabilized.
- d. Collected water samples for VOC analysis and submitted them to the lab for analysis.
- e. Collected a second water sample and ran a free and total chlorine test on it, using a Hach field test kit.
- f. Used decontamination/change-out tubing before collecting the next sample.
- g. Continued to purge water from the well until the water level was as low as possible. Took a water level measurement and collected a soil vapor sample. Retook the water level measurement after the vapor sample was collected.
- h. Collected soil vapor samples using the soil vapor sampling protocol (included leak testing) provided in the 2017 work plan.

Soil vapor samples were collected at 37 of the SVM wells; a sample was not collected at 59-PW-16 (8 to 10) because the perched water rebounded too quickly for a soil vapor sample to be collected. Leak testing was not performed at the 59-PW-05 and 59-PW-06 cluster of wells, where the shroud could not be used because of construction of the well vault.

As noted above, the five wells with standing water (identified by a "w" notation in the table above) were purged, and a water sample was collected for laboratory analysis and field testing for free and total chlorine. These wells had 0.62 to 2.67 feet of water in them. A tap water sample was collected from the sink in the women's bathroom in B4260 after allowing the water to run for 5 minutes, and tested for free and total chlorine for comparison to the well samples. The free and total chlorine concentrations of 1.0 and 1.1 milligrams per liter were detected in the tap water sample, but no chlorine was detected in the perched water samples. These tests were conducted to eliminate a leaking water supply line as a source of water in the wells. The results do not indicate a water line leak. However, the results may not be definitive, because the chlorine could potentially have dissipated by the time it reached these wells.

The field logs from the baseline sampling event are provided in Appendix B. The results are discussed in Section 4.0.

3.6 Cuttings and Wastewater Removal

The soil IDW produced from drilling was containerized and stored in a roll-off soil bin, stored adjacent to Building 4260. A composite sample was collected from the bin and analyzed for VOCs, total petroleum hydrocarbons, and metals, to characterize the waste stream and select an appropriate landfill. The soil was classified as a non-hazardous waste and was transported to Potrero Hill Landfill in Suisun City on 29 February 2017.

No wastewater was generated during drilling activities. Purge water collected during sampling was taken to the Main Base treatment plant to be treated and/or discharged.

3.7 Demobilization and Site Restoration

After completion of well installation activities, URS demobilized the equipment and materials from the work site. Demobilization included:

- ensuring that the security casings of the new wells were installed, marked, and properly secured, and that site restoration was adequate;
- verifying that the drilling rig and equipment, including support vehicles, were cleaned and removed from the site;
- inspecting the drilling areas located in the vicinity of Mather Aviation, LLC (B4260), and verifying that they were properly cleaned/void of any construction materials;
- verifying that all IDW cuttings from field activities were disposed properly, and that no soil bins remained on site;
- ensuring that site surface features were restored to match the surrounding area;
- removing all trash and excess materials generated during construction;
- ensuring that the site was left neat and orderly;
- ensuring that the contractor's staging area was clear of all construction-related equipment and materials; and
- ensuring that all rental equipment and rental vehicles were cleaned, decontaminated as necessary, and returned to the vendor.

3.8 Surveying

Precise elevation data is not required for SVM wells. Therefore, a hand-held Trimble Global Positioning System unit was used to collect the geospatial data for 59-PW-14, 59-PW-15, and 59-PW-16, and a measuring wheel was used to collect horizontal coordinates for 59-PW-17 inside of the hangar. Horizontal coordinates were determined to the closest 0.01 foot and referenced to the State Plane Coordinate System, Zone 2, North American Datum of 1983. Ground surface elevations were surveyed using the National Geodetic Vertical Datum of 1988, to the closest 0.01 foot. All well locations are shown in Figure 1-2. Northings and eastings are included in the lithologic and well construction logs, provided in Appendix C.

3.9 Field Sampling Summary

During the B4260 SI field effort, four sub-slab vapor probes were installed inside B4260 and 18 SVM wells were installed as well clusters at four locations. An indoor air sampling event was conducted, during which 8-hour soil vapor samples were collected from four indoor air sampling locations and two ambient air locations. Soil vapor samples were collected from the four sub-slab vapor probe locations and 37 soil vapor wells. Perched water samples were collected from five soil vapor wells. All samples were submitted for VOC analysis by TO-15 SIM or TO-15, as indicated on the sampling matrix (Table 3-2).

All vapor samples were submitted to Eurofins Air Toxics in Folsom, California for analysis; the perched water samples were submitted to Enthalpy Analytical in Berkeley, California (previously Curtis & Tompkins) for analysis. A discussion of the results is presented in Section 4.0.

This page intentionally left blank

4.0 INVESTIGATION RESULTS

This section presents a description of the regional geology and hydrology, and the SI sampling results.

4.1 Regional Geology and Hydrogeology

Three geologic units are of interest at Mather—from youngest to oldest they are the Terrace Gravels, the Laguna Formation, and the Mehrten Formation (MWH 2000). A generalized hydrogeologic cross-section for Mather with the four hydrostratigraphic units is shown in Figure 4-1, identified as Units A, B, C, and D. All known groundwater contamination in the site vicinity is present in the Laguna Formation, which includes Units A, B, C, and D, but the hydrogeologic units pertinent to the evaluation of soil vapor impacts are the saturated portions of Unit A (referred to as the water-table unit [A/WT]) and the underlying Unit B. The geologic units beneath Site B4260 are described next.

Terrace Gravels. Mather is situated on a series of stream terraces that were deposited during the northwestward migration of the ancestral American River. The Terrace Gravels include a surficial unit, composed predominantly of silt and clay, extending from ground surface to approximately 10 to 15 feet bgs. Below this unit, the main Terrace Gravel unit begins, consisting of coarse-grained sand and gravel with 1- to 3-inch cobbles, extending to a depth of approximately 35 to 40 feet bgs. The Terrace Gravels are unsaturated throughout Mather.

Unit A of the Laguna Formation. The upper portion of the Laguna Formation consists of unconsolidated arkosic fluvial and deltaic sediment in the form of interbedded fine to coarse sand, silt, and clay. The upper unit of the Laguna Formation (Unit A) occurs directly beneath the terrace gravels, extending to a depth of approximately 110 feet bgs.

Unit B of the Laguna Formation. The middle unit of the Laguna Formation (Unit B) lies beneath Unit A. Unit B primarily consists of sand and gravel at B4260.

Units C and D of the Laguna Formation. Units C and D make up the lower parts of the Laguna Formation. Unit C consists of silts and clays, which occur between the lowermost Unit B sands and gravels and the uppermost Unit D sands. Unit D consists of sands and silty sands, and extends from the top of the uppermost sandy layer to the beginning of the Laguna-Mehrten Transition Zone. The Laguna-Mehrten Transition Zone has been defined as a 60- to 100-foot-thick transition between the Laguna and Mehrten Formation (IT Corp 1996). The late-Tertiary Mehrten Formation is the lowermost geologic unit identified at Mather. This water-bearing unit is the primary source of potable water in the area, extracted via water supply wells located in the former Mather housing area and in the off-base areas north and west of Mather. The Mehrten Formation contains fluvial, reworked volcanic sediments, consisting primarily of black andesitic sand and interbeds of blue to brown clay. Locally, fluvial channels are filled with andesitic gravels. The top of the Mehrten Formation is interpreted to be between approximately 245 and 306 feet below mean sea level.

4.2 Geologic Results

For each SVM drilling location, a continuous soil core was collected inside the sonic sampling tool. All soil that was encountered was described and classified by the on-site geologist, in accordance with the Unified Soil Classification System.

Lithologies encountered during drilling of the four bore holes for 59-PW-14 through 17 were fairly uniform between boring locations and were similar to what was observed at borings previously installed in the area. They consisted of gravels and cobbles in a clay and/or sandy/silty matrix from approximately

0.5–28 feet bgs. These lithologies were followed by predominantly fine-grained sands with varying amounts of silty/clayey fines. Intermittent lean clay layers were encountered in all borings except 59-PW-17. These clay layers ranged from 1 to 3 feet thick, with one layer extending 6.5 feet in 59-PW-15. These clay layers have firm, medium plastic characteristics with about 5 percent very fine sands by volume, with some containing laminations and/or interbedded silty layers. Sand content increases with depth from about 55 feet bgs to the terminal depth of the borings, at approximately 84 feet bgs.

The detailed lithologic logs with well construction details are provided in Appendix C. A geologic cross-section is shown in Figure 4-2.

4.3 Indoor Air Sample Results

The indoor air, ambient air, and sub-slab soil vapor sample results are shown in Table D-1 in Appendix D. This table presents only the analytical results for compounds detected in at least one sample. VOCs detected included: 1,1,1-trichloroethane (1,1,1-TCA), 1,2-dichloroethane, carbon tetrachloride (CTCL), tetrachloroethene (PCE), trans-1,2-dichloroethene (t-1,2-DCE), and trichloroethene (TCE).

This data is presented in units of micrograms per cubic meter, because the data was specifically collected for the HHRA. The data quality assessment is provided in Section D-1 of Appendix D, and the data analysis is provided in the HHRA, which was submitted in its final form in 2017 (URS, 2017b; AR #564638).

The only compound that exceeded its health risk criteria in indoor air or ambient air samples was CTCL, but CTCL was not detected in the sub-slab samples and the detected concentrations in indoor air were consistent with national background rates reported by USEPA; therefore, the detections of CTCL are considered background and not site-related. TCE was non-detect in indoor air and was the only site-related compound detected in the sub-slab samples. Although the sub-slab concentration of TCE substantially exceeded the screening level, its absence in the indoor air samples indicates that vapor intrusion is not occurring at B4260. The HHRA concluded that an incomplete pathway occurs between the subsurface contamination and indoor air under current conditions.

4.4 Soil Vapor Sample and Perched Water Results

Soil vapor samples were collected from all but one of the B4260 vapor wells; 59-PW-16 (8 to 10) could not be sampled because the water level in this well rebounded too fast to allow time to sample. Five perched water samples were also collected from wells expected to have more than 1 foot of water in them. The soil vapor and groundwater sample results are shown in Tables D-2 and D-3, respectively, in Appendix D. Table D-2 shows only the analytical results for compounds detected in at least one sample.

VOCs detected in the soil vapor samples included: 1,1,1-TCA, 1,1-dichloroethene, benzene, CTCL, chlorobenzene, chloroform, cis-1,2-DCE, m,p-xylene, PCE, toluene, t-1,2-DCE, TCE, and trichlorofluoromethane. VOCs detected in the perched water samples included TCE and chloroform.

TCE was the predominant VOC detected in both matrices. A summary of the TCE results for both matrices is shown in Table 4-1. The soil vapor results are shown in Figure 4-3, with an estimated soil vapor plume.

Soil Vapor Analytical Results. The maximum TCE concentration detected in soil vapor was 2,400 ppmv at 59-PW-12 (8 to 10), which exceeds its GCLE of 0.35 ppmv by a factor of more than 6,000. Compounds other than TCE that were detected at concentrations exceeding 1 ppmv included cis-1,2-DCE

with a maximum concentration of 37 ppmv, 1,1-DCE with a maximum concentration of 3.9 ppmv, and t-1,2-DCE with a maximum concentration of 7.2 ppmv. The maximum concentrations of all of these VOCs were detected at 59-PW-12 (8 to 10).

The highest TCE concentrations were located at 59-PW-12 (8 to 10) and 59-PW-12 (20 to 22), as shown in Figure 4-3. The next highest TCE concentrations occurred at the 59-PW-09 well cluster, with concentrations of 24 ppmv detected at 59-PW-09A (10 to 11) and 26 ppmv at 59-PW-09B (20 to 21).

The soil vapor analytical results are assessed relative to the GCLE for TCE of 0.35 ppmv, leak test data, and soil vapor concentrations calculated from perched water concentrations, as shown in Table 4-1. The soil vapor concentration used for each well is then listed in the last column of the table. Each evaluation is described as follows:

- GCLE: TCE concentrations exceeded the GCLE of 0.35 ppmv in 21 of the 38 wells. Exceedance of the GCLE implies the potential for the soil vapor contamination to affect groundwater quality. VLEACH modeling was therefore performed to evaluate the leachate concentration that would be observed just above the groundwater table, as discussed in Section 4.5.
- Leak test data: An evaluation of the leak test data is shown in Table D-3 in Appendix D. This table shows that TCE concentrations detected at 59-PW-10 (8 to 10) and 59-PW-14 (30 to 32) potentially were biased low:
- **Calculated soil vapor concentrations**. Calculated soil vapor concentrations used perched water data. TCE concentrations in the perched water samples ranged from non-detect to 200 micrograms per liter (µg/L).

The following equation was used to calculate equivalent soil vapor concentrations for TCE:

C(a) = 24.055 C(w) H/MW

Where,

MW = Molecular weight for TCE = 131.39

H = Henry's Law constant, dimensionless for TCE = 0.377

C(w) = soil water (aqueous phase) concentration (µg/L)

C(a) = soil vapor concentration (ppmv)

The calculated soil vapor concentrations are shown in Table 4-1, and the results are discussed as follows:

- **59-PW-10A (8 to 10)**. The soil vapor concentration of 0.0056 ppmv was identified as potentially biased low. No perched water sample was collected at this location. Therefore, the value is unchanged.
- **59-PW-14 (30 to 32)**. The soil vapor concentration of 0.10 ppmv was identified as potentially biased low. The calculated value of 13.8 ppmv is substituted.
- **59-PW-14 (60 to 62)**. The calculated TCE concentration of 2.07 ppmv is lower than the measured concentration of 8.0 ppmv. No change to the measured value is made.
- **59-PW-16 (8 to 10)**. A soil vapor sample was not collected at this well because the perched water rebounded too quickly. The calculated soil vapor concentration of non-detect is substituted.
- **59-PW-17 (60 to 62)**. The soil vapor sample result of 1.4 ppmv and the calculated soil vapor concentration of 2.35 ppmv are similar. The value is not changed.

The last column of Table 4-1 shows the soil vapor concentrations selected for Figure 4-2 and Figure 4-3. Based on the potential impact on groundwater implied by exceedances of the TCE GCLE, VLEACH modeling was conducted, as discussed in Section 4.5.

4.5 Vadose Zone Modeling

Estimation of the residual contamination mass inputs to VLEACH was performed using the Thiessen polygons, shown in Figure 4-4. Thiessen polygons are used to represent spatially distributed data and are derived by drawing lines that connect halfway between wells or borings (i.e., relevant soil gas data locations), so that each data location has its own polygon. For B4260, a 150-foot radius of influence was drawn around the PW-12A/B well cluster.

The November 2017 baseline sampling data (summarized in Table 4-1) were used as inputs to VLEACH. Table E-1 in Appendix E shows the TCE concentration data for each Thiessen polygon, and the calculated equivalent soil gas concentration in micrograms per kilogram for each 5-foot-depth interval input to the VLEACH model. Also provided is the calculated, weighted average concentration for all polygons. The majority of the residual mass remaining is associated with polygon 1. The estimated mass of TCE is 354 pounds, of which 333 pounds is associated with 59-PW-12 and 59-PW-14.

VLEACH predicts leachate concentrations just above the water table. The TCE leachate concentrations predicted by VLEACH are shown in Figure 4-5 and tabulated in Table E-2 in Appendix E. The maximum initial concentration of 378 μ g/L occurs at Polygon 2, where 59-PW-09 is located; the concentrations decline to 211 μ g/L after 200 years. Polygon 1 is where 59-PW-12 and 59-PW-14 are located. The leachate concentration just above the water table starts at a concentration of 20 μ g/L in year zero, decreases for approximately 15 years to 16.5 μ g/L, then increases to a concentration of 779 μ g/L after 200 years. The initial leachate concentration for the combined polygons is 78 μ g/L; this concentration declines to a minimum of 53 μ g/L in year 55, then increases to 181 μ g/L after 200 years. The leachate concentration at 59-PW-09 (20 to 21) is extrapolated to the water table and concentrations, however, continue to show an increasing trend at 200 years. The VLEACH results indicate that the TCE in the B4260 source area is likely to affect groundwater quality at concentrations that exceed the ACL of 5 μ g/L.

4.6 Conclusions

Field activities were conducted between January 2017 and February 2018, to evaluate the potential health risk to current occupants of the office space in Building #3 from vapor intrusion and to assess the extent of vadose zone contamination and its potential impact on groundwater quality.

The indoor air study results were used in support of the HHRA report (URS, 2017b). The HHRA concluded that there is an incomplete pathway between subsurface contamination and indoor air at B4260 under current conditions. However, the HHRA noted that modifications to the building or its foundation could introduce the risk of vapor intrusion, and recommended that the existing institutional control (IC) boundaries for Site 59 be extended to cover the B4260 area. The ICs would prohibit modification to the building or its foundation without evaluating or addressing potential for risk due to vapor intrusion. It was further recommended that the ICs include provisions for addressing risk to site construction workers involved in trenching or invasive digging (excluding shallow excavations such as landscaping).

The vadose zone characterization activities indicated that the extent of vadose zone contamination is approximately contained within a 150-foot radius of 59-PW-12, which is located near the southeastern

corner of B4260. The contamination extends from a depth of approximately 8 feet to approximately 60 feet bgs.

TCE is the predominant VOC detected in the vadose zone. Soil vapor concentrations of TCE exceed the GCLE of 0.35 ppmv in 21 of 38 wells, with the maximum TCE concentration of 2,400 ppmv occurring in the vicinity of the source area. VLEACH modeling was conducted, which indicated that the TCE leachate concentration in Polygon 1 and the combined polygons would be expected to rise over time; the concentration after 200 years was modeled as 779 and 181 μ g/L, respectively. Although groundwater modeling was not conducted to assess the concentration that would be observed after mixing with groundwater, the TCE leachate concentrations are expected to result in TCE concentrations that exceed the ACL of 5 μ g/L.

4.7 Recommendations

The results of the VLEACH modeling indicate that the vadose zone contamination constitutes a potential threat to groundwater quality. Under the Superfund Accelerated Cleanup Model, a non-time-critical removal action is proposed to achieve prompt risk reduction (USEPA 1993).

As part of the non-time-critical removal action, an EE/CA is provided in Section 5.0, to evaluate removal action alternatives to address the vadose zone contamination at B4260.

This page intentionally left blank

5.0 ENGINEERING EVALUATION AND COST ANALYSIS

Section 4.0 discussed the results of the baseline soil vapor monitoring and presented VLEACH modeling results that indicate the vadose zone contamination constitutes a threat to groundwater quality. This section presents justification of an SVE removal action to address VOCs in the vadose zone, discusses the removal action objectives, evaluates the removal action alternatives, and introduces the design which is provided as an appendix to this document.

5.1 Justification of SVE Removal Action

The results of the VLEACH modeling in Section 4.5 show that the predicted TCE leachate concentration in Polygon 1 and the combined polygons would be expected to rise over time; the concentration after 200 years was modeled as 779 and 181 μ g/L, respectively. Although groundwater modeling was not conducted to assess the concentration that would be observed after mixing with groundwater, the TCE leachate concentrations are expected to result in TCE concentrations that exceed the ACL of 5 μ g/L.

The current groundwater pump and treat system for the contaminated groundwater plume that extends under the main base portion of Mather, including B4260, is currently projected to operate until approximately 2057. If the leachate concentrations from the TCE soil vapor plume at B4260 rise over time as predicted, the resulting impact to groundwater would occur well after the projected end date of the groundwater pump and treat remedy. Implementation of a non-time-critical removal action to reduce the amount of mass at B4260 that could migrate to groundwater is therefore indicated.

Based on the success of SVE at other Mather vadose zone sites similarly contaminated with VOCs, an SVE removal action is recommended for the B4260 soil gas VOC contamination. SVE is evaluated below based on the following criteria for employing SVE as a presumptive remedy (USEPA 1996):

- Dimensionless Henry's law constant greater than 0.01
- VOC vapor pressure greater than 0.5 millimeters of mercury (mm Hg)
- Soil permeability greater than 10–6 centimeter squared (cm₂)
- Soil moisture content less than 50 percent
- Soil/air-filled porosity less than 40 percent
- Low organic carbon content

Contaminants are VOCs. At B4260, the contaminants identified are primarily halogenated VOCs, with TCE being the predominant contaminant in soil gas. Compounds other than TCE that were detected at concentrations exceeding 1 ppmv included cis-1,2-DCE, 1,1-DCE, and t-1,2-DCE.

Contaminant volatility. Dimensionless Henry's law constants for the predominant VOC compounds are greater than 0.01:

TCE = 0.377Cis-1,2-DCE = 0.134 1,1-DCE = 1.07 Trans-1,2-DCE = 0.384

Contaminant vapor pressure. Vapor pressures for the predominant VOC compounds are greater than 0.5 mm Hg (Wiedemeier 1999; Patnaik 1992):

TCE = 58 mm HgCis-1,2-DCE = 200 mm Hg 1,1-DCE = 500 mm Hg Trans-1,2-DCE = 331 mm Hg **Geotechnical Data.** Soil samples were submitted for geotechnical testing from 59-PW-03, at depths of 37 feet, 57 feet, 77 feet, and 92 feet in 2007. The soil parameters are as follows:

Soil permeability. The silt sample collected at 37 feet bgs and the sand sample collected at 57 feet bgs had hydraulic conductivities of 1.76 E-05 centimeters per second (cm/s) and 2.17E-03 cm/s, respectively, or soil permeabilities of 4.58E-11 and 2.21E-08 cm², respectively (using a conversion factor of 1.0 cm/s = 1.02E-05 cm²). Although this is lower than the ideal criteria for SVE, it is within the range of soil permeabilities for which SVE can be moderately effective (USEPA 2017). Further, as described in Section 4.2, the soil lithology from approximately 0.5-28 feet bgs, where TCE concentrations are highest, consists of gravels and cobbles in a clay and/or sandy/silty matrix. Geotechnical testing was not conducted for soil within this depth layer, but higher permeability is predicted due to the presence of gravels and cobbles.

Soil moisture content. Moisture content ranged from 22.1 to 31.9 percent. Areas of the site where perched water is found may have considerably higher than 50 percent moisture content, particularly during the rainy season. The mass removal rates in these areas likely will be slower than typical, and water removal activities need to be accounted in the design. SVE activities will likely be conducted primarily in the summer when soil moisture content is lower.

Soil/air filled porosity. The porosity ranged from 41 to 50 percent, just above the criteria of 40 percent.

Organic content. The organic content ranged from 0.05 to 0.14 percent. This is considered relatively low.

The contaminants of concern, soil lithology, and geotechnical parameters at B4260 are similar to those found at adjacent SVE sites at Mather, including Site 59, Site 37/39/54, Site 29/71, and Site 18. SVE has been effectively implemented at each of those sites, successfully reducing VOC mass in soil vapor to below levels predicted to impact groundwater. SVE is a proven, cost-effective technology for remediating VOCs in soil vapor, and a treatment system is already in place at Site 59 that can be readily utilized for SVE at B4260. SVE can be implemented at B4260 with minimal disturbance to existing on-site tenants and operations. SVE is therefore considered to be the best available technology for removing soil vapor VOCs at B4260.

5.2 Removal Action Objectives

The removal action objectives of the non-time-critical-removal action B4260 for the vadose zone contamination at B4260 are based on the remedial action objectives found in the 1996 ROD and its associated explanation of significant differences, the *Final Explanation of Significant Differences for Soil Operable Unit Sites and Ground Water Operable Unit Plumes for Record of Decision for Sites 56, 59, and 60* (1998 ESD; AFBCA 1998), and the *Revised Final Explanation of Significant Differences from the Record of Decision for Soil Operable Unit Sites and Groundwater Operable Unit Plumes* (2010 ESD; AFBCA 2010). The 1996 ROD, 1998 ESD, and 2010 ESD collectively define the remedial action objectives that were selected for vadose zone cleanup at Mather as being protective of human health, the environment, and groundwater quality; the objective of remediating the vadose zone is to minimize further degradation of the groundwater caused by contaminants migrating from the overlying soil.

The soil cleanup standard will be achieved when the residual vadose zone contaminants will not cause the groundwater cleanup standard, as measured in groundwater wells monitoring the plume, to be exceeded

5-2

after cessation of the groundwater remediation. The TCE ACL identified in the 1996 ROD for the Main Base/SAC Industrial Area plume was 5 μ g/L. In accordance with the 1996 ROD and 1998 ESD, the Air Force will demonstrate that the cleanup standard has been met through contaminant fate-and-transport modeling, trend analysis, mass balance, and/or other means. SVE termination criteria are discussed further in Section 5.7.

5.3 ARARs

Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that Superfund remedial actions must meet any federal standards, requirements, criteria, or limitations that are determined to be legally "applicable" or "relevant and appropriate" requirements (ARARs). It also specifies that state ARARs must be met if they are more stringent than federal requirements. CERCLA 121 requirements generally apply as a matter of law only to remedial actions. However, the National Contingency Plan (NCP) requires that ARARs be identified and attained to the extent practicable considering the exigencies of the situation for removal actions (40 CFR 300 415). ARARs are generally placed in three categories: chemical-specific, action-specific, and location-specific. Chemical-specific ARARs define the acceptable amount or concentration of a chemical that may be found in, or discharged to, the ambient environment. Action-specific ARARs define performance and design standards for the action taken. Location-specific ARARs modify chemical- and/or action-specific ARARs to reflect the unique requirements of the location.

Because the purpose of this SVE removal action is to remove vadose zone VOCs such that groundwater remediation will not be extended, it is considered to be ancillary to the Mather groundwater remedy. Groundwater remediation ARARs are presented and discussed in the 1996 ROD. This EE/CA will only discuss ARARs deemed applicable or relevant and appropriate for the SVE removal action.

5.3.1 Chemical-Specific ARARs

Chemical-specific ARARs set limits on concentrations of specific hazardous substances, pollutants, and contaminants in the environment where removal actions are being applied. These ARARs are applied to the chemical of concern in the designated media. For Mather SVE removal actions, the key removal action ARARs are those associated with soil vapor VOCs that may impact groundwater above the MCL. The table below lists the chemical-specific ARARs, that is, the groundwater cleanup levels to be used when screening or modeling residual vadose zone soil gas VOC concentrations to assess their potential impact on the groundwater cleanup.

Potential Contaminant of Concern	Safe Drinking Water Act or State Equivalent	
Potential Contaminant of Concern	Primary MCL (µg/L)	
1,1-Dichloroethene	6	
TCE	5	
cis-1,2-Dichloroethene	6	
trans-1,2-Dichloroethene	10	

Mather B4260 SVE Chemical-specific ARARs

Notes: $\mu g/L = micrograms$ per liter

5.3.2 Action-Specific ARARs

Action-specific ARARs set controls or restrictions on activities related to the management of hazardous substances or pollutants. The table below lists action-specific ARARs for SVE at B4260.

Action: SVE	Requirement	ARAR Determination	Description of Requirement	Comment
Hazardous waste identification and handling	22 CCR 66262.10(a) and 66262.11	Applicable	Requirements for the identification and accumulation of hazardous waste are applicable to hazardous wastes (i.e., treatment system O&M wastes) generated during the implementation of the remedial alternative.	These requirements are applicable to hazardous wastes that are generated, containerized, and stored onsite, such as treatment unit residuals from the SVE system
Container storage	22 CCR 66264.171, 172, 173, 174	Applicable	 Containers of hazardous waste must: Be maintained in good condition. Be compatible with hazardous waste to be stored. Be closed during storage except to add or remove waste. Have adequate secondary containment when stored onsite. 	These requirements are applicable to hazardous wastes that are generated, containerized, and stored at the site, such as treatment unit residuals from the SVE system.
	and (b)	Applicable	Hazardous waste generators must: Place containers on a sloped, crack- free base, and protect from contact with accumulated liquid. Provide a containment system with a capacity of 10 percent of the volume of containers with liquids. Remove spilled or leaked waste in a timely manner to prevent overflow of containment system.	These requirements are applicable to hazardous wastes that are generated, containerized, and stored onsite, such as treatment unit residuals from the SVE system.
Control of Air Emissions	SMAQMD Rule 201	Applicable	Requires sources of air emissions to obtain permits to operate.	Substantive requirements of air permits would apply if 2 pounds per day or more of air emissions would occur from onsite treatment systems. These requirements could include operational restrictions, such as emission limits.
	SMAQMD Rule 202, Section 302	Applicable	Requires Best Available Control Technology to be applied to new emissions.	
	SMAQMD Rule 402 (as promulgated)	Applicable	Emissions from a new SVE system may not cause injury to the public.	
Deed restrictions and SLUC	22 CCR 67391.1(a), (d), and (e)	Relevant and Appropriate	Requires imposition of appropriate limitations on land use by recorded LUC when hazardous substances remain on the property at levels that are not suitable for unrestricted use of the land. Requires that the LUC be recorded in the county where the land is located.	Appropriate restrictions (in the form of institutional controls) may be included in the Federal deed as well as a SLUC.
	CA Civil Code Sect. 1471(a) and (b)	Relevant and Appropriate	Specifies requirements for the LUC to apply to successors in the title to the	

Mather B4260 SVE Action-specific ARARs

5.3.3 Location-Specific ARARs

These ARARs establish additional restrictions on contaminant levels or activities in the environment and are triggered by the unique nature of a site's location or its immediate environment. They may function as chemical-specific ARARs or action-specific ARARS. Examples of locations that require special consideration include floodplains, wetlands, historic places, and sensitive ecosystems or habitats. The proposed SVE site is located adjacent to a hangar at an operating airport with no unique features requiring location-specific ARARs.

5.4 Identification of Removal Action Alternatives

The removal action alternatives selected for evaluation in this EE/CA include the No Action alternative and SVE. Although no historical removal actions are known to have occurred at B4260, SVE is the remedy that has been successfully implemented for Mather vadose zone sites previously contaminated with VOCs, in accordance with the 1996 ROD, including the adjacent Site 59. As discussed in Section 5.1, the site conditions are consistent with EPA's criteria for using SVE as a presumptive remedy (USEPA 1996). SVE is considered to be the best available technology for removing soil vapor VOCs at B4260, and a treatment system is already in place at Site 59 that can be readily utilized for SVE at B4260. Therefore, SVE is considered the presumptive remedy for VOCs in soil at B4260 and the alternatives are defined as follows:

- Alternative 1, No Action. Under the no action scenario, no attempts would be taken to remove the VOCs from the vadose zone.
- Alternative 2, SVE. The SVE remedy for B4260 would include the following components:
 - treating the contaminated shallow and medium depth soils by in situ SVE; and
 - monitoring the residual soil gas vadose zone concentrations to assess the potential impact on groundwater.

5.5 Analysis of Removal Action Alternatives

5.5.1 Criteria for Comparison of Alternatives

The removal action alternatives are evaluated based on the criteria of effectiveness, implementability, and cost:

- **Effectiveness.** The effectiveness of an alternative refers to its ability to meet the removal action objectives within the scope of the removal action. This criteria looks at overall protection of public health and the environment, protectiveness of workers during implementation, long-term effectiveness and permanence, short-term effectiveness, and compliance with the ARARs.
- **Implementability.** This includes technical feasibility, availability of equipment and services, and administrative feasibility.
- **Cost.** This includes the capital, operational costs, close-out costs, and present worth cost to implement the alternative.

5.5.2 Comparison of Alternatives

The No Action and SVE alternatives are described in more detail next and are ranked against the criteria of effectiveness, implementability, and cost. A rating of zero is given if the criteria are not met, and a rating of 5 is given if the criteria are fully met.

Alternative 1, No Action. The No Action alternative would not include any additional field activities to remediate the vadose zone contamination. This alternative is considered to be a no-cost alternative for purposes of comparison to SVE.

The No Action alternative is expected to rank poorly in effectiveness because it would not be able to meet the removal action objectives, and therefore would not be protective of groundwater quality. However, because no groundwater data is available to validate the VLEACH modeling results, a ranking of 1 is given for effectiveness.

The No Action alternative would be highly implementable from a technical standpoint because no field activities would be conducted. However, this alternative would score low for implementability from an administrative standpoint because it would not be protective of groundwater and is therefore not likely to achieve community and regulatory acceptance. The No Action alternative was therefore assigned a rank of 2 for overall implementability.

The No Action alternative would rank high for cost in the short term, because it is a no-cost alternative. However, selection of the No Action alternative could result in future expenditures over and above the current cost for SVE if, for example, a groundwater extraction and treatment system is required. Therefore, cost is given a rank of 3.

Alternative 2, SVE. The SVE alternative would include installation of an SVE well, screened from 8 to 40 feet and from 54 to 60 feet in the vicinity of the source area, by 59-PW-12. The well would be plumbed to the existing Site 59 SVE extraction and treatment system, which includes an air/water separator (AWS), a 750-cubic-foot-per-minute blower, and two 3,000-pound vapor-phase granular-activated carbon vessels for off-gas treatment. A second AWS would be installed near the SVE well, and locations for drainage of water would be included in the design. The system would be operated for a minimum of 6 months; an additional 2 years of operation is anticipated, after which the system would be shut down and evaluated for rebound. Provided that the data justifies SVE termination, the wells, piping, and the Site 59 SVE system would be decommissioned.

The SVE alternative is expected to rank high in effectiveness because SVE is known to be an effective technology for removing VOCs from the vadose zone. However, because of the presence of perched water, the rate of removal may be slower and SVE may take longer than for other sites. Therefore, a ranking of 4 is given for effectiveness.

The SVE alternative is highly implementable from a technical standpoint, but some challenges would occur because of the number of underground utilities and the presence of perched water. These challenges would be mitigated by installing the piping aboveground and by adding additional capacity to remove water from the system. This alternative would rank high from an administrative standpoint, because SVE is a proven technology that has previously achieved regulatory and community acceptance for its ability protect groundwater. A ranking of 4 is given for implementability.

The SVE alternative would be more costly than the No Action alternative in the short term. The cost breakdown is shown in Table 5-1 and includes a capital cost of approximately \$420,000, two years with annual operating costs of approximately \$240,000 per year, and closeout costs after 3 years of \$267,000. The present worth cost for the SVE removal action is estimated at \$1,170,000. However, long-term costs could exceed that amount if contaminants remain in place and future groundwater extraction and treatment is required, particularly if a new groundwater pump and treat system was needed. A ranking of 3 is therefore given for cost.

Alternative	Effectiveness	Implementability	Cost	Total
Alt 1 – No Action	1	2	3	6
Alt 2 – SVE	4	4	3	11

Summary. The No Action alternative ranks poorly compared to SVE, being given 6 points; SVE is given 11 points. Key factors in the rankings include the inability of the No Action alternative to protect groundwater, to achieve public and regulatory acceptance, and to reduce costs in the long term.

5.6 Implementation Plan for SVE Removal Action

The proposed schedule to prepare the documents and implement an SVE removal action at B4260 is shown below. The draft SI/EE/CA would be made available for public comment concurrent with the agency review period. The system design is provided in Appendix F. SVE system construction would follow the Action Memorandum.

Task	Start		End
SI/EECA + Design–Agency Review	4/2/2018	to	5/2/18
Final SI/EECA	5/16/2018	to	5/16/18
Public Comment Period (30 days)	4/2/2018	to	5/2/2018
Action Memorandum-Agency Review	5/3/2018	to	5/16/2018
Final Action Memorandum	5/23/2018	to	5/23/18
SVE Well and Piping Installation	5/24/2018	to	6/14/2018
Startup	6/15/2018	to	6/21/2018
SVE O&M Start Date	6/22/2018	to	6/22/2018

The SVE system would operate for a minimum of 6 months after the start date. An additional 2 years of operation is anticipated, after which the system would be shut down and evaluated for rebound. Termination of SVE would occur after the narrative vadose zone cleanup standards from the 1996 ROD and 1998 ESD are met, and would consider the following factors:

- a. whether the predicted concentration of the leachate from the vadose zone (using VLEACH or another appropriate vadose zone model that interprets soil vapor data) will exceed the groundwater cleanup standard;
- b. whether the mass removal rate is approaching asymptotic levels after temporary shutdown periods and appropriate optimization of the SVE system;
- c. the additional cost of continuing to operate the SVE system at concentrations approaching asymptotic mass removal levels;
- d. the predicted effectiveness and cost of further enhancements to the SVE system (e.g., additional vapor extraction wells);
- e. whether the cost of groundwater remediation would be significantly more if the residual vadose zone contamination is not addressed;
- f. whether residual mass in the vadose zone would significantly prolong the time to attain the groundwater cleanup standard; and

g. the incremental cost over time of vadose zone remediation compared to the incremental cost over time for groundwater remediation on the basis of a common unit (e.g., cost per pound of TCE removed), provided that the underlying groundwater has not reached aquifer cleanup levels.

Optimization activities may include cycling of the SVE system on and off, to optimize the SVE operation and/or evaluate the factors listed above.

6.0 REFERENCES

- Air Force Base Conversion Agency (AFBCA). 1996. Final Superfund Record of Decision, Soil Operable Unit Sites and Groundwater Operable Unit Plumes [1996 ROD].
- ------. 1998 (August). Final Explanation of Significant Differences for Soil Operable Unit Sites and Ground Water Operable Unit Plumes for Record of Decision for Sites 56, 59, and 60 [1998 ESD].
- 2010 (February). Explanation of Significant Differences from the Record of Decision for Soil Operable Unit Sites and Groundwater Operable Unit Plumes [2010 ESD]. Soil Sites WPO7/F1-11, ST-37/ST-39/SS-54, SD-57, SD-59, OT-69, Main Base/SAC Area Plume, Site 7 Plume, Northeast Plume, former Mather AFB.
- California Department of Toxic Substances Control (DTSC). 2011. *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* [Vapor Intrusion Guidance].
- California Department of Toxic Substances Control (DTSC), Los Angeles Regional Water Quality Control Board, and San Francisco Regional Water Quality Control Board. 2015 (July). *Advisory– Active Soil Vapor Investigations*.
- California Department of Water Resources (DWR). 2015. Statewide Advisory: Sealing Materials for Water Wells, Monitoring Wells, Cathodic Protection Wells, and Geothermal Heat Exchange Wells.
- International Technology Corporation (IT Corp). 1996. Additional Site Characterization and Basewide Operable Unit Remedial Investigation Report for Mather Air Force Base, California. Final. September.
- Lackey, S. O., W. Myers, T. C. Christopherson, and J. J. Gottula. 2009 (October, and subsequent unpublished research). *In-Situ Study of Grout Materials 2001–2006 and 2007 Dye Tests*. Nebraska Grout Task Force, Lincoln, NE: University of Nebraska.
- Montgomery Watson Harza (MWH). 2000. Informal Technical Information Report and Hydrogeologic Report for Phase III and Phase III Groundwater Remediation of the Main Base/SAC Groundwater Plume. Mather Air Force Base, California. Draft Final. July.
- Nielsen, D. M. 2005 (September). Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring. Second edition.
- Patnaik, P. 1992. A Comprehensive Guide to the Hazardous Properties of Chemical Substances. Van Nostrand Reinhold.
- URS Group, Inc. (URS). 2010 (August). Former Mather Air Force Base Health and Safety Plan for Long-Term Operations, Maintenance, and Monitoring.
- ———. 2017a (February). Site 59b Remedial Investigation Work Plan, Former Mather Air Force Base, California.
- ———. 2017b (September). Final Building 4260 Human Health Risk Assessment, Former Mather Air Force Base, California.

- U.S. Environmental Protection Agency (USEPA). 1993 (August). *Guidance on Conducting Non-Time-Critical Removal Actions under CERCLA*. EPA/540-R-93-057.
- . 1996 (July). User's Guide to the VOCs in Soils Presumptive Remedy.
- ------. 2015. Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway for Subsurface Vapor Sources to Indoor Air.
- ------. 2017 (October). *How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites.* EPA 510-B-17-003.
- Wiedemeier. 1999.Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley and Sons, Inc.

TABLES

Borehole Depth (feet)	Casing and Screen Diameter (inches)	Casing and Screen Material	Screen Intervals (feet)	Screen Slot Size (inches)	Filter Pack #2/12 Sand + Sand Bridge #0/30 Sand (feet)	Hydrated Bentonite Seal (feet)	Above Hydrated Bentonite
59-PW-14	1	1" SCH 40 PVC	30-32	0.020	5	25	Cement Grout*
	1	1" SCH 40 PVC	60–62	0.020	5	25	NA
	1	1" SCH 40 PVC	80-82	0.020	5	15	NA
59-PW-15	1	1" SCH 40 PVC	9–11	0.020	5	4	Cement Grout*
	1	1" SCH 40 PVC	20-22	0.020	5	6	NA
	1	1" SCH 40 PVC	30-32	0.020	5	5	NA
	1	1" SCH 40 PVC	60-62	0.020	5	25	NA
	1	1" SCH 40 PVC	80-82	0.020	5	15	NA
59-PW-16	1	1" SCH 40 PVC	8–10	0.020	5	3	Cement Grout*
	1	1" SCH 40 PVC	20-22	0.020	5	7	NA
	1	1" SCH 40 PVC	30-32	0.020	5	5	NA
	1	1" SCH 40 PVC	60-62	0.020	5	25	NA
	1	1" SCH 40 PVC	80-82	0.020	5	15	NA
59-PW-17	1	1" SCH 40 PVC	8–10	0.020	5	3	Cement Grout*
	1	1" SCH 40 PVC	20-22	0.020	5	7	NA
	1	1" SCH 40 PVC	30-32	0.020	5	5	NA
	1	1" SCH 40 PVC	60-62	0.020	5	25	NA
	1	1" SCH 40 PVC	80-82	0.020	5	15	NA

Table 3-1. Soil Vapor Monitoring Well Construction Summary B4260, Former Mather Air Force Base

* Contains approximately 5 percent bentonite to reduce shrinkage.

NA = not applicable PVC = polyvinyl chloride SCH = schedule SVE = soil vapor extraction

Table 3-2. Sampling Matrix B4260, Former Mather Air Force Base

Commit	Sample	Commits ID	0.1		or Sample alysis	Perched Water Analysis	
Sample	Depth	Sample ID	QA —			-	Note
Location	(feet bgs)	Number	Sample	TO-15	TO-15 SIM	SW8260B	Note
Indoor Air Sample	S:				1		
59-IA-01		59-IA-01-NS	FD		1		
59-IA-01		59-IA-01-FD	FD		1		
59-IA-02		59-IA-02-NS			1		
59-IA-03		59-IA-03-NS			1		
59-IA-04		59-IA-04-NS			1		
Ambient Air Samp	les:	50 11 01 10					
59-AA-01		59-AA-01-NS	50		1		
59-AA-01		59-AA-01-FD	FD		1		
59-AA-02		59-AA-02-NS			1		
Sub-Slab Samples:							
59-SS-01		59-SS-01-NS		1			
59-SS-01		59-SS-01-FD	FD	1			
59-SS-02		59-SS-02-NS		1			
59-SS-03		59-SS-03-NS		1			
59-SS-04		59-SS-04-NS		1			
Existing Soil Vapor							
59-PW-05	10-20	59-PW-05-10-NS		1			
59-PW-05	30-40	59-PW-05-30-NS		1			
59-PW-05	50-60	59-PW-05-50-NS		1			
59-PW-05	70-90	59-PW-05-70-NS		1			
59-PW-06	11-21	59-PW-06-11-NS		1			
59-PW-06	31-41	59-PW-06-31-NS		1			
59-PW-06	51-61	59-PW-06-51-NS		1			
59-PW-06	51-61	59-PW-06-51-FD	FD	1			
59-PW-06	70-90	59-PW-06-70-NS		1			
59-PW-07	10-20	59-PW-07-10-NS		1			
59-PW-08	10-20	59-PW-08-10-NS		1			
59-PW-09A	10-11	59-PW-09A-10-NS		1			
59-PW-09B	20-21	59-PW-09B-20-NS		1			
59-PW-09B	20-21	59-PW-09B-20-FD		1			
59-PW-10A	8-10	59-PW-10A-08-NS		1			
59-PW-10B	20-22	59-PW-10B-20-NS		1			
59-PW-11A	8-10	59-PW-11A-08-NS		1			
59-PW-11A	8-10	59-PW-11A-08-FD	FD	1			
59-PW-11B	20-22	59-PW-11B-20-NS		1			
59-PW-12A	8-10	59-PW-12A-08-NS		1			
59-PW-12B	20-22	59-PW-12B-20-NS		1			
59-PW-13A	8-10	59-PW-13A-08-NS		1		1	
59-PW-13B	20-22	59-PW-13B-20-NS		1			
New Soil Vapor W				-			
59-PW-14	30-32	59-PW-14-30-NS		1		1	
59-PW-14	60-62	59-PW-14-60-NS		1		1	
59-PW-14	60-62	59-PW-14-60-FD	FD	1			
59-PW-14	80-82	59-PW-14-80-NS	. –	1			
59-PW-15	8-10	59-PW-15-08-NS		1			
59-PW-15	20-22	59-PW-15-20-NS		1			
59-PW-15	30-32	59-PW-15-30-NS		1			
59-PW-15	60-62	59-PW-15-60-NS		1			
59-PW-15	80-82	59-PW-15-80-NS		1			
59-PW-15 59-PW-16	8-10	59-PW-15-80-NS		I		1	C
59-PW-16	20-22	59-PW-16-06-NS		1		I	а
59-PW-16	30-32	59-PW-16-30-NS		1			
59-PW-16 59-PW-16				1			
	60-62	59-PW-16-60-NS					
59-PW-16	80-82	59-PW-16-80-NS		1			
59-PW-17	8-10	59-PW-17-08-NS		1			

Table 3-2. Sampling Matrix B4260, Former Mather Air Force Base

Sample	Sample Depth	Sample ID	QA -	Soil Vapor Sample Analysis		Perched Water Analysis	
Location	(feet bgs)	Number	Sample	TO-15	TO-15 SIM	SW8260B	Note
59-PW-17	20-22	59-PW-17-20-NS		1			
59-PW-17	20-22	59-PW-17-20-FD	FD	1			
59-PW-17	30-32	59-PW-17-30-NS		1			
59-PW-17	60-62	59-PW-17-60-NS		1		1	
59-PW-17	80-82	59-PW-17-80-NS		1			
			Totals:	47	8	5	

Notes:

The indoor air, ambient air, and sub-slab soil vapor samples were analyzed for the 9 TO-15 SIM analytes listed in Table E-1 of the quality assurance project plan (QAPP) addendum in the work plan (URS, 2017a).

The soil vapor samples will be analyzed for the TO-15 suite of analyses listed in Table E-1 of the QAPP addendum in the work plan (URS, 2017a).

a = No soil vapor sample collected; perched water recharges too quickly.

bgs = below ground surface

FD = field duplicate

NS = normal sample

QA = quality assurance

SIM = selective ion monitoring

Table 4-1. TCE Results in Soil Vapor and Perched Water B4260, Former Mather AFB, Baseline Soil Vapor Sampling Event

							TCE			Selecte	d
	Sample				TCE		Perched	Calculated		TCE	
	Depth				Soil Vapor	TCE	Water	TCE Soil	Leak	Soil Vap	or
	(feet	SAMPLE		SAMPLE	Results	Soil Vapor	Result	Vapor Conc	Test	Result	
LOCATION	bgs)	DATE	SAMPLE NAME	CODE	(ppmv)	EPA Flags	(ug/L)	(ppmv)	Result	(ppmv	
59-PW-05	10-20	11/7/2017	59-PW-05-10-NS	NS1	0.11					0.11	
59-PW-05	30-40	11/7/2017	59-PW-05-30-NS	NS1	0.32					0.32	
59-PW-05	50-60	11/7/2017	59-PW-05-50-NS	NS1	0.018	J+				0.018	J+
59-PW-05	70-90	11/7/2017	59-PW-05-70-NS	NS1	0.41					0.41	
59-PW-06	11-21	11/7/2017	59-PW-06-11-NS	NS1	0.023					0.023	
59-PW-06	31-41	11/7/2017	59-PW-06-31-NS	NS1	0.01	В				0.01	В
59-PW-06	51-61	11/7/2017	59-PW-06-51-FD	FD1	0.011	В				0.011	B, c
59-PW-06	51-61	11/7/2017	59-PW-06-51-NS	NS1	0.01	В				0.01	В
59-PW-06	70-90	11/7/2017	59-PW-06-70-NS	NS1	0.36					0.36	
59-PW-07	10-20	11/7/2017	59-PW-07-10-NS	NS1	7.1					7.1	
59-PW-08	10-20	11/7/2017	59-PW-08-10-NS	NS1	1.1					1.1	
59-PW-09A	10-11	11/7/2017	59-PW-09A-10-NS	NS1	24					24	
59-PW-09B	20-21	11/7/2017	59-PW-09B-20-FD	FD1	26					26	
59-PW-09B	20-21	11/7/2017	59-PW-09B-20-NS	NS1	26					26	
59-PW-10A	8-10	11/7/2017	59-PW-10A-08-NS	NS1	0.0056	F			С	0.0056	F
59-PW-10B	20-22	11/7/2017	59-PW-10B-20-NS	NS1	0.0039	F				0.0039	F
59-PW-11A	8-10	11/8/2017	59-PW-11A-08-FD	FD1	0.033					0.033	С
59-PW-11A	8-10	11/8/2017	59-PW-11A-08-NS	NS1	0.031					0.031	
59-PW-11B	20-22	11/7/2017	59-PW-11B-20-NS	NS1	1.4					1.4	
59-PW-12A	8-10	11/7/2017	59-PW-12A-08-NS	NS1	2,400					2400	
59-PW-12B	20-22	11/7/2017	59-PW-12B-20-NS	NS1	270					270	
59-PW-13A	8-10	11/2/2017	59-PW-13A-08-NS	NS1	0.0018	F	<0.1	< 0.01		0.0018	F
59-PW-13B	20-22	11/2/2017	59-PW-13B-20-NS	NS1	0.53					0.53	
59-PW-14	30-32	11/1/2017	59-PW-14-30-NS	NS1	0.10	F	200	13.8	С	13.8	а
59-PW-14	60-62	11/1/2017	59-PW-14-60-FD	FD1	8.0					8	
59-PW-14	60-62	11/1/2017	59-PW-14-60-NS	NS1	8.0		30	2.07		8	
59-PW-14	80-82	11/3/2017	59-PW-14-80-NS	NS1	1.4					1.4	
59-PW-15	8-10	11/2/2017	59-PW-15-08-NS	NS1	0.00					0.00	
59-PW-15	20-22	11/2/2017	59-PW-15-20-NS	NS1	0.59					0.59	
59-PW-15	30-32	11/2/2017	59-PW-15-30-NS	NS1	0.017					0.017	
59-PW-15	60-62	11/2/2017	59-PW-15-60-NS	NS1	0.47					0.47	
59-PW-15	80-82	11/2/2017	59-PW-15-80-NS	NS1	0.07					0.07	
59-PW-16	8-10	11/2/2017	59-PW-16-10-NS	NS1	NS		<0.1	< 0.0069		< 0.0069	b
59-PW-16	20-22		59-PW-16-20-NS	NS1	1.40					1.4	
59-PW-16	30-32	11/1/2017	59-PW-16-30-NS	NS1	0.37					0.37	
59-PW-16	60-62	11/3/2017	59-PW-16-60-NS	NS1	1.20					1.2	
59-PW-16	80-82	11/3/2017	59-PW-16-80-NS	NS1	0.039					0.039	
59-PW-17	8-10		59-PW-17-08-NS	NS1	0.0081	F				0.0081	F
59-PW-17	20-22		59-PW-17-20-FD	FD1	5.30					5.3	
59-PW-17	20-22		59-PW-17-20-NS	NS1	5.50					5.5	
59-PW-17	30-32		59-PW-17-30-NS	NS1	3.30					3.3	
59-PW-17	60-62		59-PW-17-60-NS	NS1	1.40		34	2.35		1.4	
59-PW-17	80-82		59-PW-17-80-NS	NS1	0.050					0.05	

Bolded values exceed the groundwater contaminant level equivalent (GCLE) for TCE of 0.35 ppmv Notes:

a = lsopropylene concentration exceeds leak test criteria; VOC concentration potentially biased low; calculated soil vapor concentration from perched water analyses substituted for soil vapor analytical result

b = Soil vapor sample was not collected because perched water levels rebounded. Calculated TCE soil vapor concentration from perched water analysis is used.

c = Field duplicate analysis result is used because it is greater than the normal sample concentration

B = Qualified as non-detected due to blank contamination

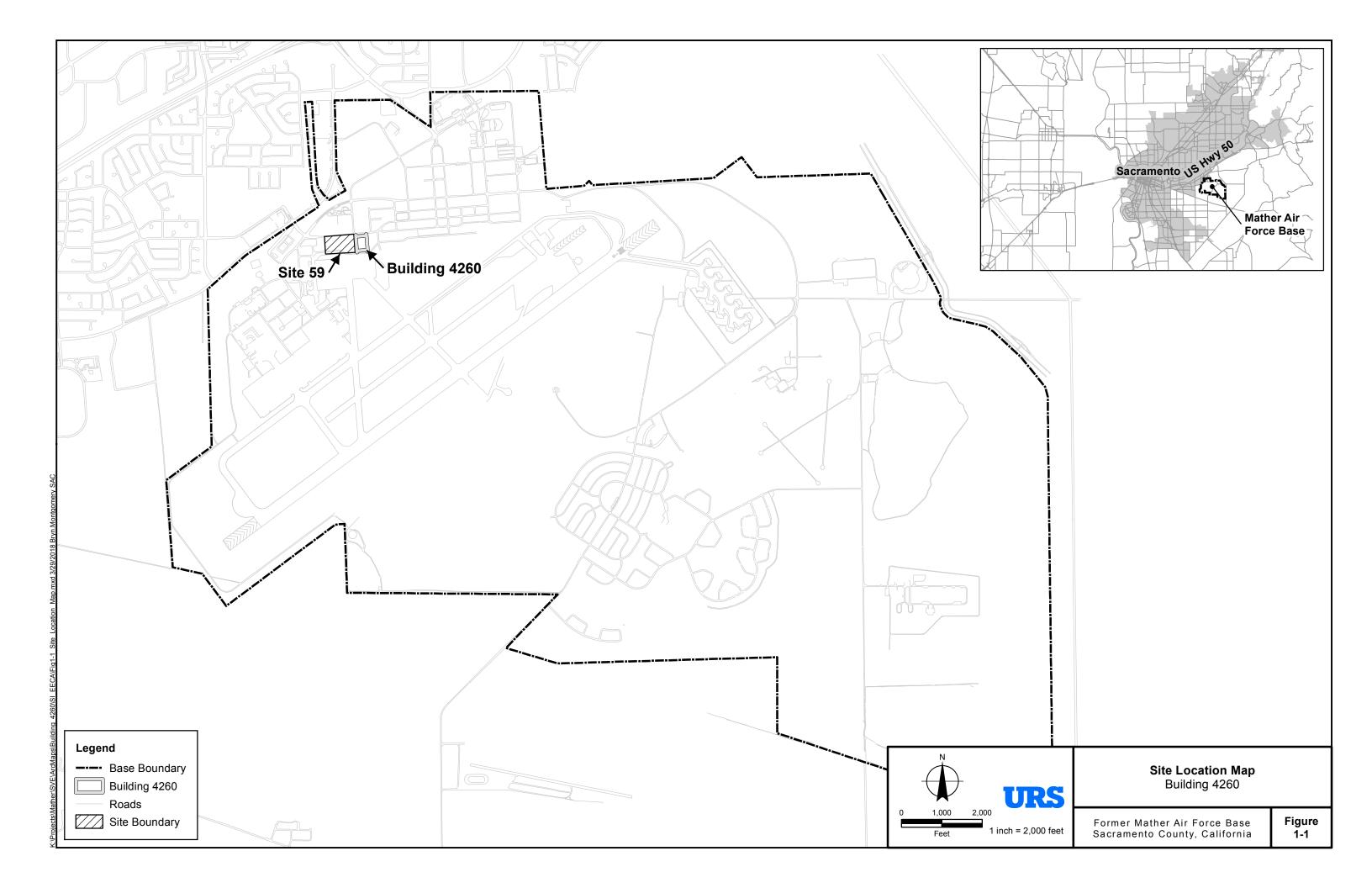
bgs = below ground surface

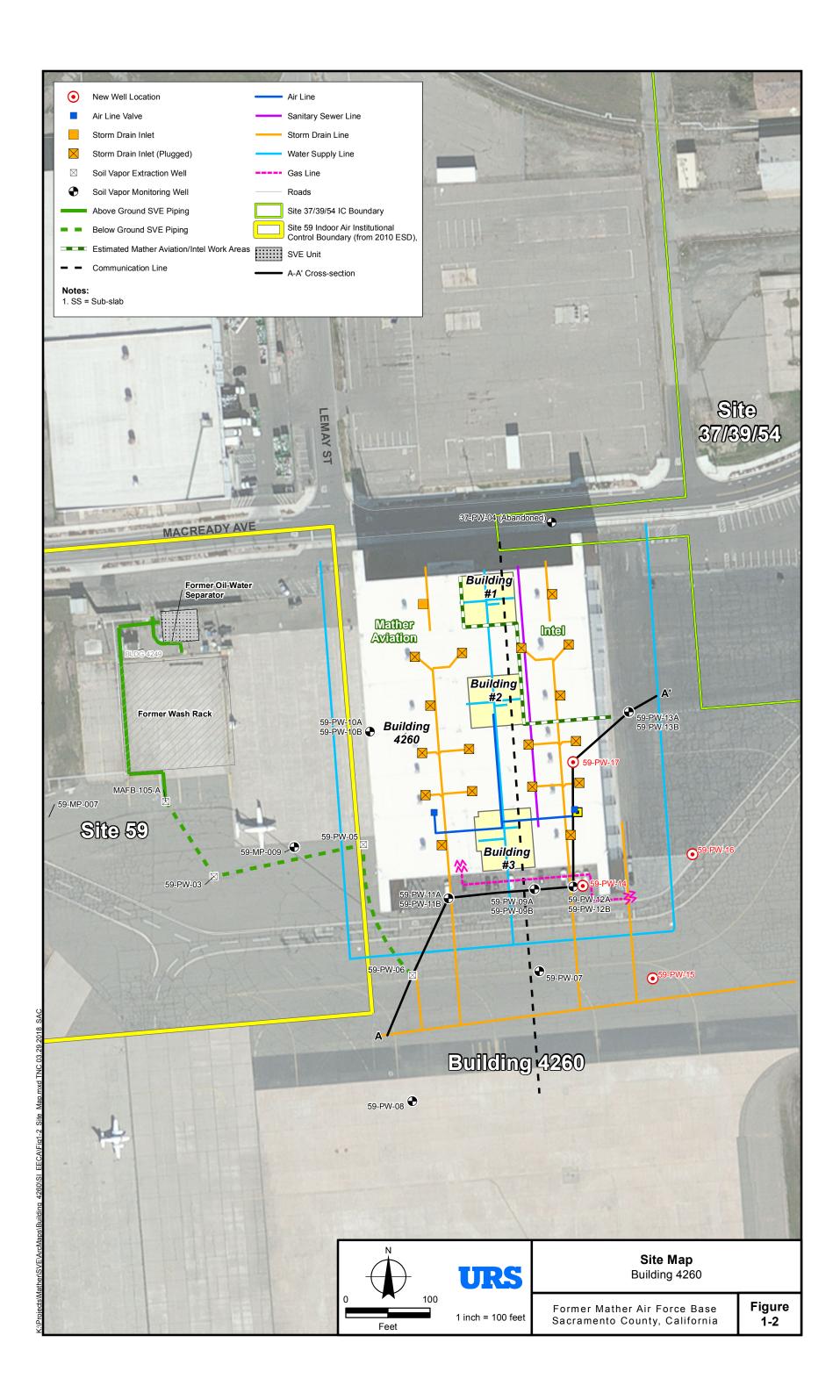
C = potentially compromised - VOC concentration may be low.

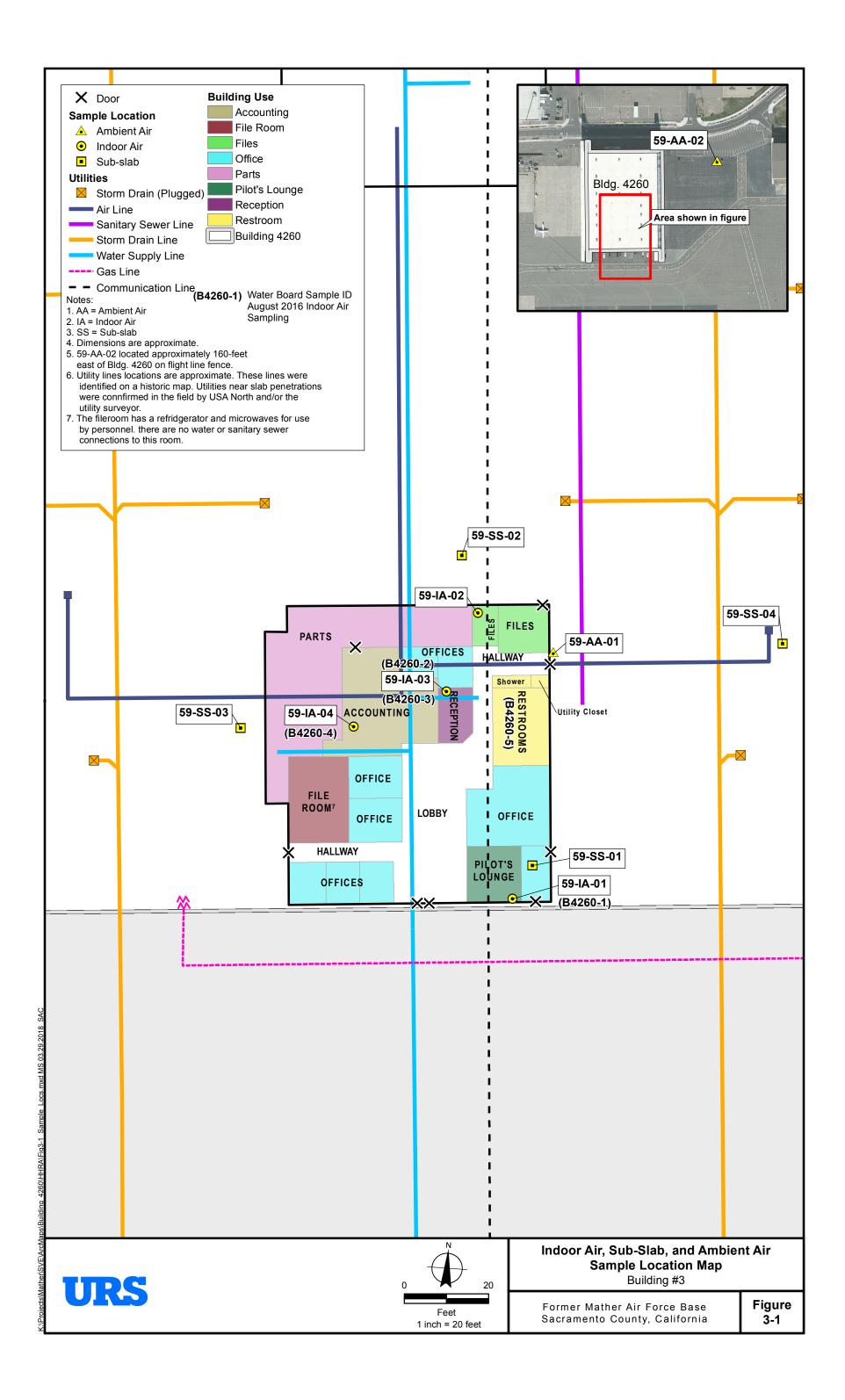
F = result reported between method detection limit and reporting limit

J+ = estimated value, potential high bias

NS = not sampled ppmv = parts per million by volume TCE = trichloroethene ug/L = micrograms per liter < = not detected above the detection limit

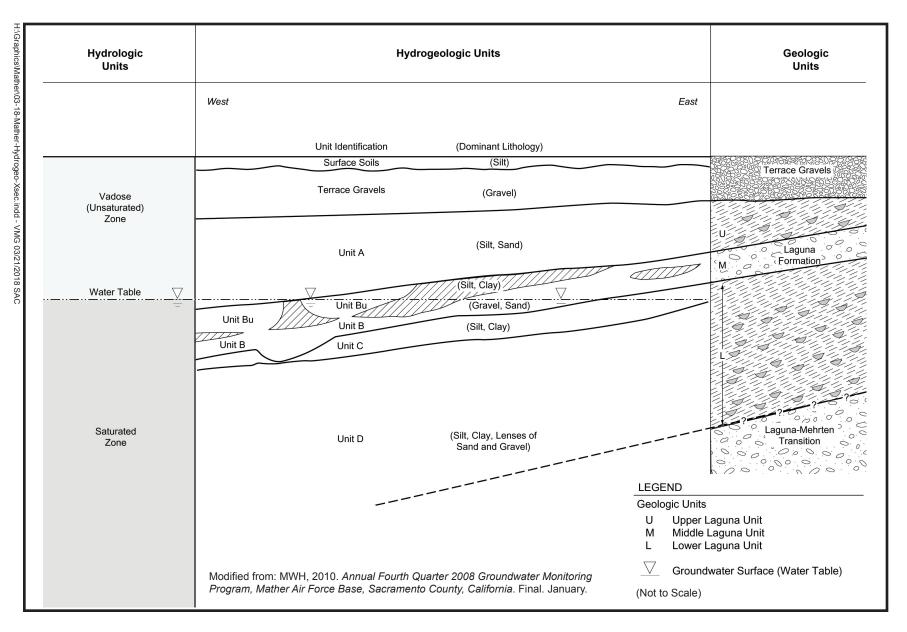
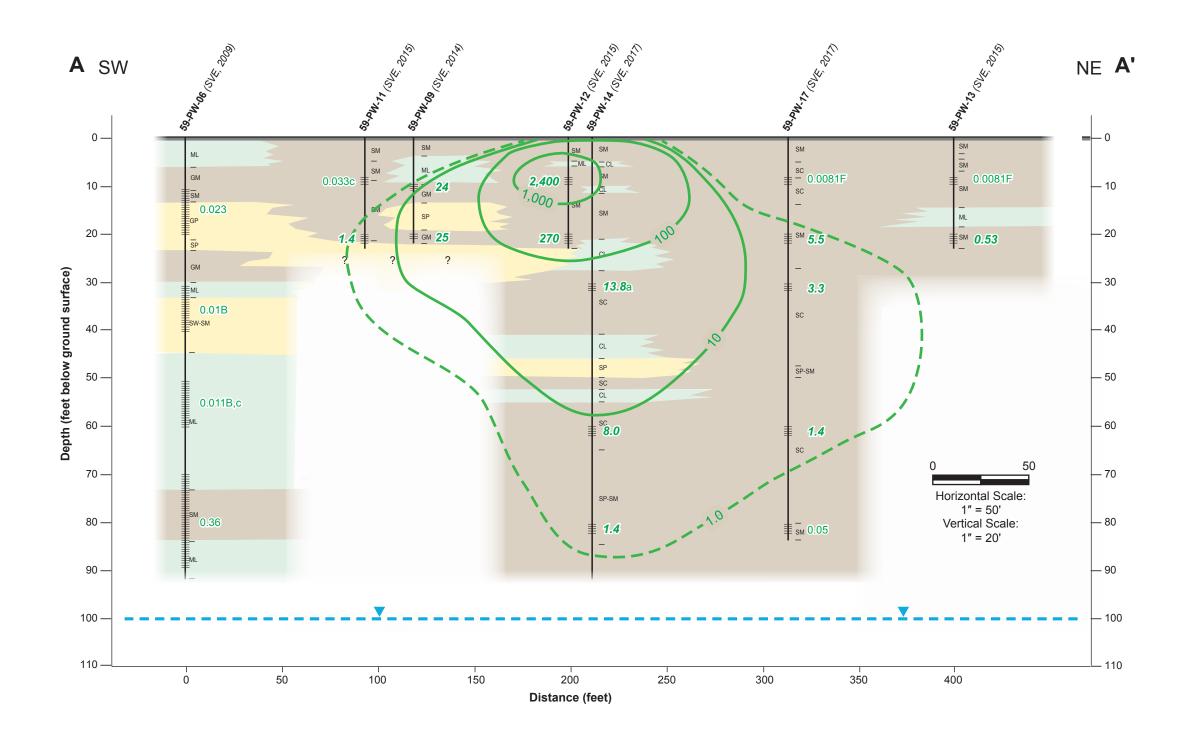
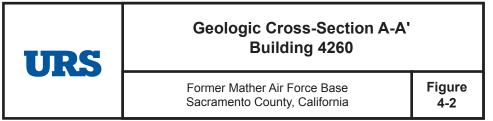
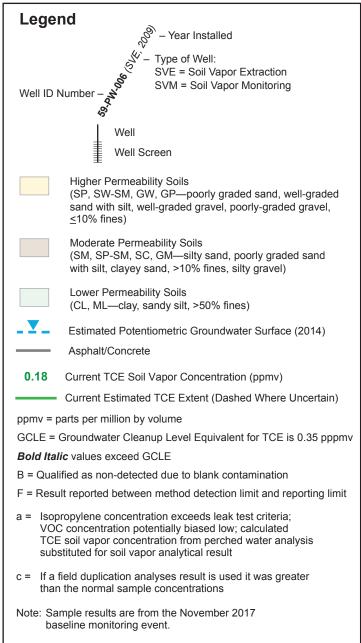
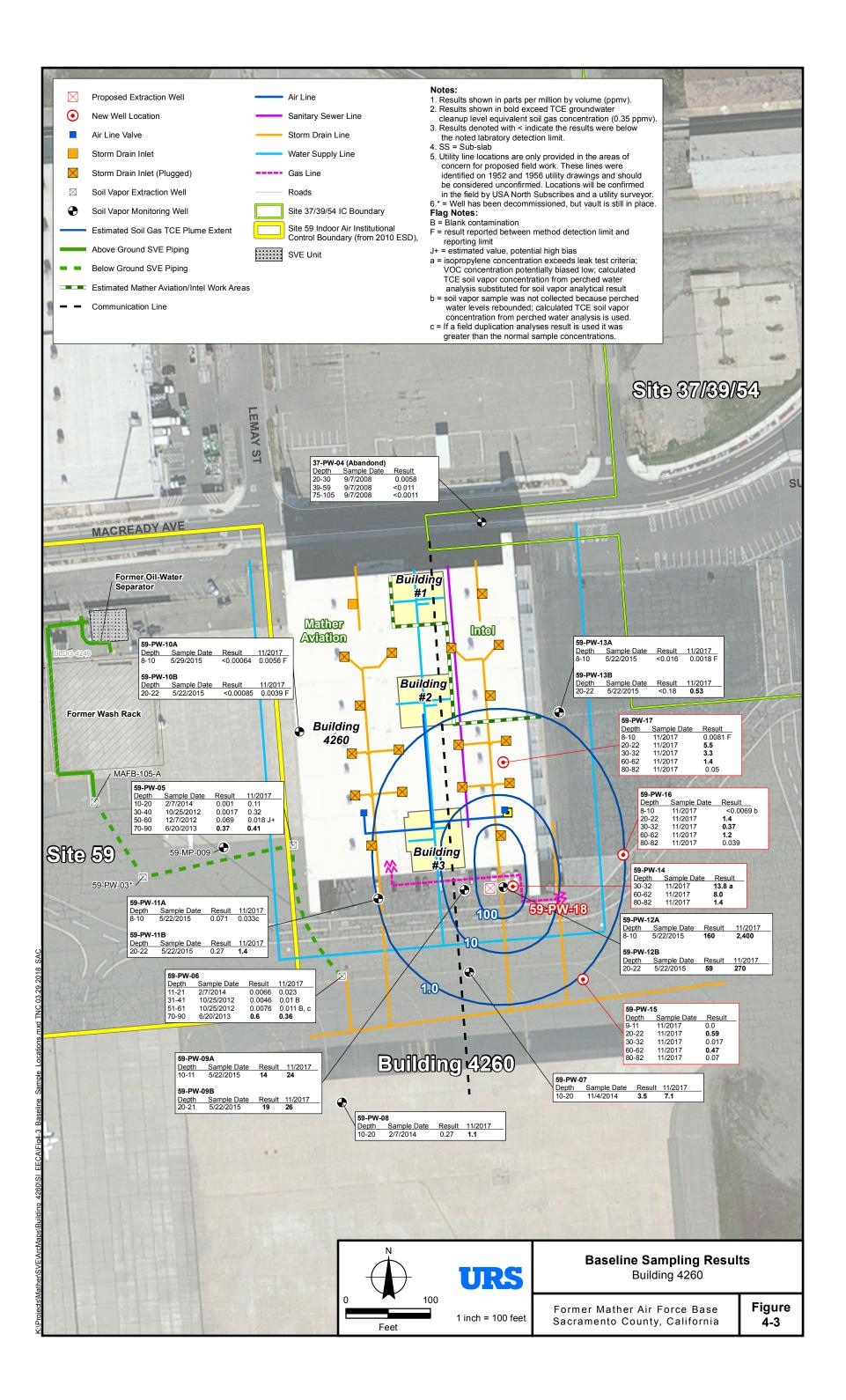

Table 5-1. Cost Breakdown for Alternative 2 - Soil Vapor ExtractionB4260, Former Mather AFB

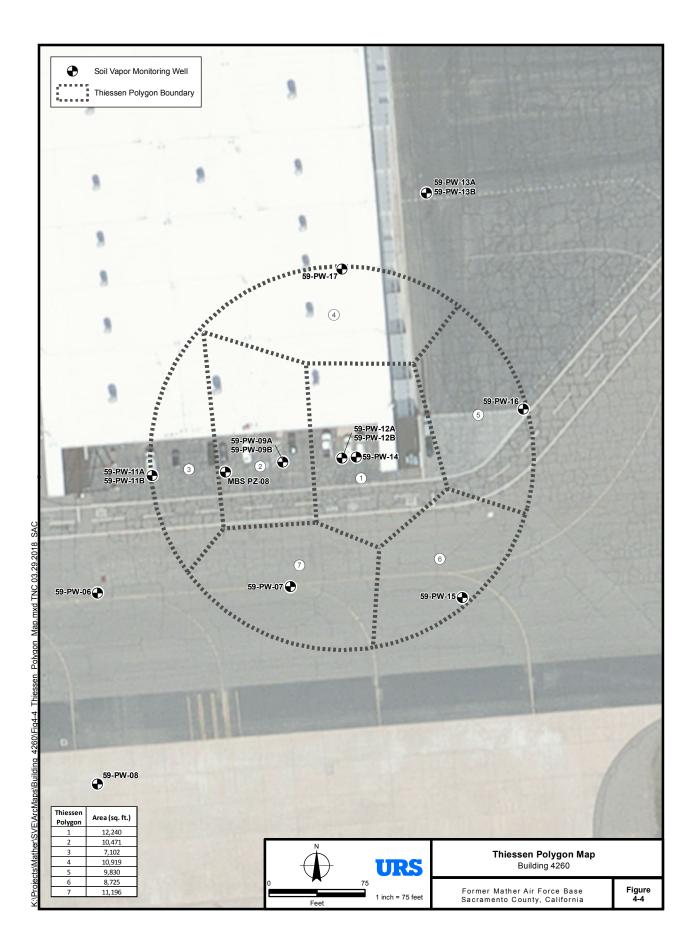

Alternative 2 - Soil Vapor Extraction				ate Summa		
Site:B4260Location:Mather Air Force BasePhase:EECA (-30% to +50%)Base Year:2018Date:March 2018		installation of	piping from the	e new well to th	ne existing Site	ew SVE well near the source area, 59 SVE system, minor upgrades to the Site o 2 additional years.
CAPITAL COSTS: Description	Quantity	Unit	Unit Cost	Subtotal	Total	Notes
Description	Quantity	onit	onn cost	Subtotal	Total	
Work Plans & Permits	1	lump sum	\$0	\$0	\$	0 Already completed
Plans & Specifications and Procurement	1	lump sum	\$20,000	\$20,000	\$20,00	0 In progress
Completion Report	1	lump sum	\$30,000	\$30,000	\$30,00	0
Land Use Controls	1	lump sum	\$0	\$0	\$0	0
SVE Well Installation	1	lump sum	\$23,000	\$23,000	\$23,00	0
Piping Installation and SVE system upgrade	1	lump sum	\$100,000	\$100,000	\$100,000	0
System Startup	1	lump sum	\$15,000	\$15,000	\$15,00	0
System Operations - 6 months	1	lump sum	\$70,000	\$70,000	\$70,00	0
Quarterly Monitoring - 2 events	1	lump sum	\$30,000	\$30,000	\$30,00	0
Monthly and Quarterly Reporting - 6 months	1	lump sum	\$30,000	\$30,000	\$30,00	0
Subtotal					\$318,000	-
Contingency	20%				\$63,600	"Scope contingency typically ranges from 10 to 25 percent. Bid contingency typically ranges from 10 to 20 percent." (EPA, 2000) 10% Scope + 10% Bid
Subtotal					\$381,600	-
Project Management	10%				\$38,160	Based on EPA, 2000
Remedial Design	20%				\$0	Included above
Construction Management	15%				\$0	Included above
Total Capital Cost					\$419,760	7

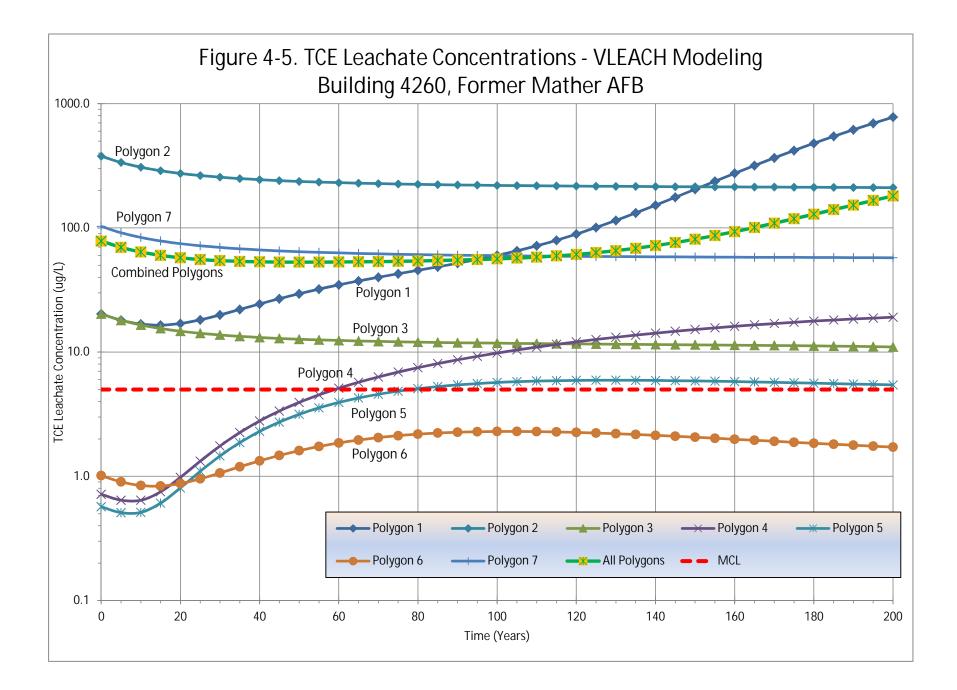

Table 5-1. Cost Breakdown for Alternative 2 - Soil Vapor ExtractionB4260, Former Mather AFB

Alternative 2 - Soil Vapor	Extraction			Cost Estin	nate Summa	ry	
O&M COSTS:							
Description		Quantity	Unit	Unit Cost	Subtotal	Total	Notes
Annual O&M Activities		1	Event	\$200,000	\$200,000	\$200,000	
Contingency Total O&M Cost		20%				\$40,000) "The total contingency value (bid + scope) that is applied to annual O&M costs is typically equal to or greater than the contingency applied to capital costs." (EPA, 2000)
PERIODIC COSTS:						\$240,000	
Description	Year	Quantity	Unit	Unit Cost	Subtotal	Total	Notes
SVE Well Decommissioning		14	well	\$8,000	\$112,000	\$112,000	
SVE System Decommissioning		1	lump sum	\$20,000	\$20,000	\$20,000	
SVE Completion Report		1	Iump sum	\$40,000	\$40,000	\$40,000	
Decommissioning Work Plan		1	Iump sum	\$20,000	\$20,000	\$20,000)
Decommissioning Report		1	lump sum	\$10,000	\$10,000	\$10,000)
Subtotal						\$202,000	
Contingency	20%					\$40,400	_
Subtotal						\$242,400	_
Project Management	10%					\$24,240	Based on EPA, 2000
Total Periodic Cost						\$266,640]
PRESENT VALUE ANALYSIS:							
Description	Year	Capital Cost		Periodic	Total Cost	3-year	Present Worth
			O&M Cost	Cost		Discount	
						Factor	
	-	• • • • • • • •			• · · ·	(-0.5%)	• =
	0	\$419,760			. ,		\$419,760
	1	\$0	, ,				\$241,206
	2	\$0 \$0			+ -)		\$242,418
	3 4	\$0 \$0					\$270,680 \$0
	4 Subtotals	\$0 \$419,760					50 \$1,174,064
	TOTAL	φ 4 19,700	φ460,000	σ φ200,040	φ1,100,400	,	\$1,174,064
	IUIAL						ψ1,17,004

FIGURES


Figure 4-1. Generalized Hydrologic, Hydrogeologic, and Geologic Units, Former Mather Air Force Base, Sacramento County, California



APPENDIX A

Historical Data (Provided on CD)

Remedial Investigation Work Plan

(URS 2017)

Excerpts: Analytical Data Well Construction Logs

Remedial Investigation Work Plan (URS 2017)

Excerpts: Analytical Data Well Construction Logs

TABLE A-1 SITE 59b HISTORICAL SOIL VAPOR ANALYTICAL RESULTS WELLHEAD/FIELD BASELINE, REBOUND, AND PERFORMANCE SAMPLE RESULTS MATHER AIR FORCE BASE SACRAMENTO COUNTY, CALIFORNIA (Page 1 of 3)

Well ID	Soil Type (USCS Class)	Sample Depth (feet bgs)	Date Sampled	Rebound Duration (weeks)	PCE (ppmv)	TCE (ppmv)	cis -1,2 DCE (ppmv)	CTCL (ppmv)	TPH-g (ppmv)	NMOC (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl benzene (ppmv)	Total Xylenes (ppmv)	Total (ppmv)	7/23/15 PID (ppm)
59-PW-05	ML/SM/SW	10-20	11/19/2009	Baseline	0.0099	0.064	< 0.0011	< 0.0011	< 0.022	NA	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.07	
59-PW-05	ML/SM/SW	10-20	3/5/2010	5	0.053	1.3	< 0.0022	< 0.0022	< 0.043	NA	< 0.0022	< 0.0022	<0.0022	0.0052	1.4	
59-PW-05	ML/SM/SW	10-20	9/23/2011	12	0.028	0.69	<0.00064	< 0.00031	NA	NA	0.00034	0.0087	0.0027	0.0103	0.74	
59-PW-05	ML/SM/SW	10-20	10/25/2012	17	0.016	0.43	<0.0021	< 0.0021	NA	NA	< 0.0021	0.0033	<0.0021	0.0038	0.45	
59-PW-05	ML/SM/SW	10-20	6/20/2013	Perf Sample	0.012	0.014	0.0033	< 0.00023	NA	NA	0.00022	0.0019	0.0007	0.00322	0.04	
59-PW-05	ML/SM/SW	10-20	2/7/2014	27	0.00022	0.001	<0.00021	<0.00016	-	NA	<0.0002	0.00051	<0.00017	0.00039	0.00	0.3
59-PW-05	GC/SC	30-40	11/19/2009	Baseline	0.095	1.2	<0.0072	<0.0072	<0.14	NA	<0.0072	<0.0072	<0.0072	<0.0072	1.3	
59-PW-05	GC/SC	30-40	3/5/2010	5	0.069	1.9	< 0.0029	<0.0029	<0.058	NA	< 0.0029	0.012	<0.0029	0.0047	2.0	
59-PW-05	GC/SC	30-40	9/21/2010	34	0.0078	0.46	< 0.0011	<0.0011	0.24	NA	< 0.0011	<0.0011	<0.0011	<0.0011	0.71	
59-PW-05	GC/SC	30-40	9/23/2011	12	0.089	4.2	< 0.004	<0.0019	NA	NA	<0.0016	0.019	0.0054	0.0212	4.3	
59-PW-05	GC/SC	30-40	10/25/2012	17	<0.0012	0.0017	<0.0012	<0.0012	0.67	NA	<0.0012	<0.0012	<0.0012	<0.0012	0.67	0.3
59-PW-05	ML/CL	50-60	11/19/2009	Baseline	0.062	3	< 0.015	< 0.015	<0.3	NA	0.03	< 0.015	< 0.015	< 0.015	3.1	
59-PW-05	ML/CL	50-60	3/5/2010	5	0.082	6.3	0.017	<0.011	<0.22	NA	<0.011	<0.011	<0.011	0.0047	6.4	
59-PW-05	ML/CL	50-60	9/21/2010	34	0.079	0.66	0.0028	<0.0024	0.66	NA	< 0.0024	<0.0024	<0.0024	<0.0024	1.4	
59-PW-05	ML/CL	50-60	9/23/2011	12	0.046	5.3	0.0091	<0.0045	NA	NA	< 0.0045	<0.0037	< 0.0042	< 0.004	5.4	
59-PW-05	ML/CL	50-60	12/7/2012	25	<0.00031	0.069	<0.00037	<0.00012	0.55	NA	<0.00025	0.021	0.0037	0.0191	0.66	0.4
59-PW-05	ML	70-90	11/19/2009	Baseline	0.024	0.13	<0.001	0.0014	0.3	NA	0.026	0.0015	<0.001	<0.001	0.48	
59-PW-05	ML	70-90	3/5/2010	5	< 0.0011	0.02	< 0.0011	< 0.0011	<0.022	NA	< 0.0011	0.0012	<0.0011	0.0047	0.03	
59-PW-05	ML	70-90	10/25/2012	17	0.046	0.88	< 0.0043	<0.0043	NA	NA	< 0.0043	< 0.0043	< 0.0043	<0.0043	0.93	
59-PW-05		70-90	6/20/2013	Perf Sample	0.026	0.37	0.013	0.024	NA	NA	0.00054	0.0019	0.00084	0.00418	0.44	0.3
59-PW-06	GM/SM/GP	11-21	11/19/2009	Baseline	0.027	1.2	< 0.0054	< 0.0054	<0.11	NA	0.027	< 0.0054	< 0.0054	< 0.0054	1.3	
59-PW-06	GM/SM/GP	11-21	3/5/2010	5	0.051	7	<0.011	<0.011	<0.22	NA	< 0.011	< 0.011	<0.011	0.0047	7.1	
59-PW-06	GM/SM/GP	11-21	9/21/2010	34	0.044	3.7	< 0.0098	<0.0098	<0.49	NA	<0.0098	<0.0098	<0.0098	<0.0098	3.7	
59-PW-06	GM/SM/GP	11-21	9/23/2011	12	<0.00024	0.0048	< 0.00032	<0.00015	NA	NA	< 0.00012	<0.00016	<0.00022	< 0.00027	0.0048	
59-PW-06	GM/SM/GP	11-21	10/25/2012	17	0.0071	0.48	< 0.00023	< 0.00023	NA	NA	< 0.00023	<0.00023	<0.00023	< 0.00023	0.49	
59-PW-06	GM/SM/GP	11-21	6/20/2013	Perf Sample	0.016	0.97	0.0063	<0.00059	NA	NA	<0.00047	0.002	0.00085	0.00299	1.0	
59-PW-06	GM/SM/GP	11-21	2/7/2014	27	0.00019	0.0066	<0.00021	0.00021	-	NA	<0.0002	0.00058	0.00026	0.00113	0.0090	0.4
59-PW-06	ML/SW-SM	31-41	11/19/2009	Baseline	0.035	4.7	<0.027	<0.027	<0.54	NA	<0.027	<0.027	<0.027	<0.027	4.7	
59-PW-06	ML/SW-SM	31-41	3/5/2010	5	0.057	8.1	0.02	<0.011	<0.23	NA	<0.011	<0.011	<0.011	0.0047	8.2	
59-PW-06	ML/SW-SM	31-41	9/21/2010	34	0.05	6.6	0.024	< 0.012	0.63	NA	<0.012	<0.012	<0.012	<0.012	7.3	
59-PW-06	ML/SW-SM	31-41	9/23/2011	12	0.03	13	0.03	<0.0086	NA	NA	<0.0088	0.013	<0.0081	0.009	13.1	
59-PW-06	ML/SW-SM	31-41	10/25/2012	17	<0.0011	0.0046	<0.0011	<0.0011	1	NA	<0.0011	<0.0011	<0.0011	<0.0011	1.0	0.6
59-PW-06	ML	51-61	11/19/2009	Baseline	0.033	2.6	0.02	< 0.014	<0.29	NA	< 0.014	< 0.014	< 0.014	< 0.014	2.7	
59-PW-06	ML	51-61	3/5/2010	5	0.082	6.3	0.018	<0.011	<0.23	NA	<0.011	<0.011	<0.011	0.0047	6.4	
59-PW-06	ML	51-61	9/21/2010	34	0.067	7.4	0.051	< 0.012	0.77	NA	< 0.012	<0.012	<0.012	< 0.012	8.3	
59-PW-06	ML	51-61	9/23/2011	12	0.066	10	0.054	<0.0088	NA	NA	< 0.0089	0.017	<0.0083	0.0092	10.1	

TABLE A-1 SITE 59b HISTORICAL SOIL VAPOR ANALYTICAL RESULTS WELLHEAD/FIELD BASELINE, REBOUND, AND PERFORMANCE SAMPLE RESULTS MATHER AIR FORCE BASE SACRAMENTO COUNTY, CALIFORNIA (Page 2 of 3)

Well ID	Soil Type (USCS Class)	Sample Depth (feet bgs)	Date Sampled	Rebound Duration (weeks)	PCE (ppmv)	TCE (ppmv)	cis -1,2 DCE (ppmv)	CTCL (ppmv)	TPH-g (ppmv)	NMOC (ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethyl benzene (ppmv)	Total Xylenes (ppmv)	Total (ppmv)	7/23/15 PID (ppm)
59-PW-06	ML	51-61	10/25/2012	17	<0.0011	0.0076	<0.0011	<0.0011	1.1	NA	<0.0011	<0.0011	<0.0011	<0.0011	1.1	0.7
59-PW-06	ML/SM/ML	70-90	11/19/2009	Baseline	0.022	0.23	< 0.0011	0.0022	0.022	NA	0.014	< 0.0011	< 0.0011	< 0.0011	0.29	
59-PW-06	ML/SM/ML	70-90	3/5/2010	5	0.017	0.72	0.0028	0.01	<0.023	NA	<0.0011	< 0.0011	< 0.0011	<0.0011	0.75	
59-PW-06	ML/SM/ML	70-90	9/23/2011	13	0.0083	0.54	0.0019	0.003	NA	NA	0.00033	0.018	0.0051	0.0198	0.60	
59-PW-06	ML/SM/ML	70-90	10/25/2012	17	0.017	1.2	0.0029	0.0041	NA	NA	<0.0045	<0.0045	<0.0045	<0.0045	1.2	
59-PW-06	ML/SM/ML	70-90	6/20/2013	Perf Sample	0.017	0.6	0.0029	0.47	NA	NA	<0.00075	0.0086	0.0038	0.0165	1.1	0.2
59-PW-07	GW	10-20	1/17/2014	Baseline	< 0.0015	1.3	< 0.00085	< 0.0005	NA	NA	< 0.0007	0.011	0.013	0.055	1.4	
		10-20	2/7/2014	27	0.003	1.4	0.0013	< 0.00066	NA	NA	< 0.0008	0.0013	< 0.00069	0.0015	1.4	
		10-20	4/3/2014	35	0.0043	2.3	< 0.0053	< 0.0024	NA	NA	< 0.0018	0.026	0.018	0.077	2.4	
		10-20	10/1/2014	61	0.014	4.9	0.007	< 0.0027	NA	NA	< 0.0029	0.022	0.02	0.087	5.0	
		10-20	11/4/2014	66	0.01	3.5	0.0048	< 0.0018	NA	NA	< 0.0041	0.019	0.014	0.053	3.6	
		10-20	5/22/2015	94	0.011	4.4	0.0054	< 0.012	NA	3.6	< 0.012	0.018	0.0092	0.0394	11.7	5.3
59-PW-08	GM/GW	10-20	1/17/2014	Baseline	< 0.0039	0.35	< 0.0022	0.0041	NA	NA	< 0.0018	0.019	0.017	0.075	0.47	
		10-20	2/7/2014	27	0.0066	0.27	0.00098	0.0016	NA	NA	0.00035	0.00052	< 0.00017	0.00056	0.27	
		10-20	5/22/2015	94	0.012	0.6	0.0032	0.0012	NA	0.93	0.00043	0.015	0.0068	0.0309	2.5	1.2
59-PW-09A	GM	10-11	11/4/2014	Baseline	0.0077	5.7	0.012	< 0.0018	NA	NA	< 0.0041	0.048	0.018	0.075	5.9	
0, 1, 1, 0, 11		10-11	5/22/2015	28	0.024	14	0.033	<0.022	NA	12	<0.022	0.025	0.0085	0.0367	38	12.9
59-PW-09B	GM	20-21	11/4/2014	Baseline	0.012	7	0.013	< 0.0028	NA	NA	<0.0063	0.035	0.021	0.081		
J9-F W-09D	UW															
		20-21	5/22/2015	28	0.024	19	0.042	< 0.024	NA	17	< 0.024	0.039	0.011	0.0508	53	13.4
59-PW-10A	SM/ML	8-10	5/29/2015	Baseline	0.00046	0.00064	< 0.00026	< 0.00016	NA	2.4	0.0047	0.033	0.02	0.075	4.9	0.5
59-PW-10B	GM	20-22	5/22/2015	Baseline	0.00073	0.00085	<0.0011	< 0.0011	NA	0.58	0.0066	0.029	0.0085	0.0477	1.25	0.1
59-PW-11A	SM/GM	8-10	5/22/2015	Baseline	0.12	0.071	<0.0011	< 0.0011	NA	0.83	0.0022	0.031	0.0082	0.0421	1.8	0.8
59-PW-11B	GM	20-22	5/22/2015	Baseline	0.088	0.27	0.00034	0.00039	NA	0.89	0.0035	0.026	0.0067	0.0328	2.1	1
59-PW-12A	GM	8-10	5/22/2015	Baseline	< 0.32	160	14	< 0.32	NA	140	< 0.32	0.072	< 0.32	0.079	454	255
59-PW-12B	GM	20-22	5/22/2015	Baseline	< 0.12	59	0.45	< 0.12	NA	50	< 0.12	0.033	< 0.12	0.055	160	104

TABLE A-1 SITE 59b HISTORICAL SOIL VAPOR ANALYTICAL RESULTS WELLHEAD/FIELD BASELINE, REBOUND, AND PERFORMANCE SAMPLE RESULTS MATHER AIR FORCE BASE SACRAMENTO COUNTY, CALIFORNIA (Page 3 of 3)

Rebound Soil Type Sample Depth Date Duration PCE TCE cis -1,2 DCE CTCL TPH-g NMOC Benzene Tolue Well ID (USCS Class) (feet bgs) Sampled (weeks) (ppmv) (ppmv) (ppmv) (ppmv) (ppmv) (ppmv) (ppmv) (ppn 59-PW-13A SM 8-10 5/22/2015 0.0033* 0.016* < 0.013* < 0.013* 2.3 0.0054* 0.04 Baseline NA 59-PW-13B GM 20-22 5/22/2015 Baseline 0.0061 0.18 0.0076 < 0.0012 0.9 0.0025 0.0 NA

Notes:

< Values represent laboratory's detection limit. bgs = below ground surface CL = clay GP = poorly graded gravel GM = silty gravel GW = well-graded gravel J = estimated value ML = silt NA = not analyzed NMOC = non-methane organic compounds. This analysis measures all non-methane (CH4) hydrocarbons. An NMOC concentration similar to the total sum of the concentrations of speciated analytes (e.g., TCE, PCE, etc.) indicates minimal TPH-g or other "unaccounted for" hydrocarbon concentrations. ppmv = parts per million by volume SC = clayey silt SM = silty sand SP = poorly graded sand TPH-g = total petroleum hydrocarbons as gasoline USCS = Unified Soil Classification System μ g/L = micrograms per liter

Rebound sample = Sample was collected at least 2 weeks after system shutdown. Perf Sample = Performance sample = Sample was collected while system was operating or was collected less than 2 weeks after system shutdown.

*Baseline sample results for 59-PW-13A may be biased low, high tracer gas concentration in sample.

	Cleanup Level	Cor
Contaminant	(µg/L)	
Trichloroethene	5	
Tetrachloroethene	5	
cis-1,2-dichloroethene	6	
Carbon tetrachloride	0.5	
Benzene	1	
Toluene	150	
Ethylbenzene	300	
Total Xylenes	1750	
1,4 Dichlorobenzene	5	

Groundwater

≥ Groundwater Cleanup Level Soil Gas Equivalent Concentration (ppmv)

uene mv)	Ethyl benzene (ppmv)	Total Xylenes (ppmv)	Total (ppmv)	7/23/15 PID (ppm)
43*	0.015*	0.064*	2.4	0.7
015	0.0073	0.0361	2.0	0.6

GCLE Soil Gas Concentration (ppmv) 0.350 0.670 0.2 0.08 0.07 8.3 17 63 0.06

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	1,1,1-Trichloroethane	2.1		PPBV	0.35	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	1,1,1-Trichloroethane	19		PPBV	3.6	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	1,1,1-Trichloroethane	1.1	J	PPBV	0.67	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	1,1,1-Trichloroethane	83		PPBV	4.6	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	1,1,1-Trichloroethane	150		PPBV	4.9	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	1,1,1-Trichloroethane	0		PPBV	0.14	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	1,1,1-Trichloroethane	0		PPBV	0.31	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	1,1,1-Trichloroethane	0.98	J	PPBV	0.33	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	1,1,1-Trichloroethane	2.4		PPBV	0.34	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	1,1,1-Trichloroethane	0		PPBV	66	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	1,1,1-Trichloroethane	360		PPBV	24	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	1,1,1-Trichloroethane	0		PPBV	3.8	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	1,1,1-Trichloroethane	2.2		PPBV	0.35	1.2
					1,1,1-Trichloroethane Max	360				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	1,1-Dichloroethane	0		PPBV	0.2	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	1,1-Dichloroethane	0		PPBV	2.1	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	1,1-Dichloroethane	0		PPBV	0.38	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	1,1-Dichloroethane	0		PPBV	2.7	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	1,1-Dichloroethane	0		PPBV	2.9	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	1,1-Dichloroethane	0		PPBV	0.24	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	1,1-Dichloroethane	0		PPBV	0.18	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	1,1-Dichloroethane	0		PPBV	0.18	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	1,1-Dichloroethane	0		PPBV	0.19	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	1,1-Dichloroethane	0		PPBV	38	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	1,1-Dichloroethane	0		PPBV	14	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	1,1-Dichloroethane	0		PPBV	2.1	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	1,1-Dichloroethane	0		PPBV	0.2	1.2
					1,1-Dichloroethane Max	0				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	1,1-Dichloroethene	6		PPBV	0.32	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	1,1-Dichloroethene	90		PPBV	3.3	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	1,1-Dichloroethene	6.3		PPBV	0.6	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	1,1-Dichloroethene	340		PPBV	20	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	1,1-Dichloroethene	480		PPBV	21	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	1,1-Dichloroethene	0		PPBV	0.38	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	1,1-Dichloroethene	0		PPBV	0.28	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	1,1-Dichloroethene	1.1		PPBV	0.29	1.1

LOCATION SAMPLE DAME CODE SAMPLE DATE METHOD ANALYTE RESULT FLAGS UNIT DL RL 59-PW-1118 59-PW-112A S9-PW-12A-NS NS1 5/22/15 12:05 TO15 1,1-Dichloroethene 400 PPBV 0.0 220 59-PW-12A 59-PW-13A-NS NS1 5/22/15 12:05 TO15 1,1-Dichloroethene 400 PPBV 0.0 120 59-PW-13A S9-PW-13A-NS NS1 5/22/15 12:03 TO15 1,1-Dichloroethene 0 PPBV 0.4 1.2 59-PW-13B S9-PW-13B-NS NS1 5/22/15 10:05 TO15 1,2 Dichloroethane 0 PPBV 0.4 1.2 59-PW-08 S9-PW-08-NS NS1 5/22/15 11:30 TO15 1,2 Dichloroethane 0 PPBV 4.2 1.2 59-PW-08 S9-PW-08-NS NS1 5/22/15 11:30 TO15 1,2 Dichloroethane 0 PPBV 4.2 2.4 59-PW-08 S9-PW-08-NS NS1 5/22/15 12:33			SAMPLE		ANALYTICAL			EPA			
Sp-Pw.12A Sp-Pw.12A-NS NS1 S/22/15 TO1S 1.1-Dichloroethene 400 PPBV 280 320 Sp-Pw.12A Sp-Pw.12A-NS NS1 S/22/15 12.28 TO1S 1.1-Dichloroethene 970 PPBV 100 120 Sp-Pw.13A Sp-Pw.13A-NS NS1 S/22/15 10:23 TO1S 1.1-Dichloroethene 6.4 PPBV 0.32 1.2 Sp-Pw.13B Sp-Pw.13B-NS NS1 S/22/15 10:33 TO1S 1.2-Dichloroethane 0 PPBV 0.4 1.2 Sp-Pw.03 Sp-Pw.06ANS NS1 S/22/15 10:33 TO1S 1.2-Dichloroethane 0 PPBV 0.4 2.2 Sp-Pw.03A Sp-Pw.06ANS NS1 S/22/15 TO1S 1.2-Dichloroethane 0.19 PPBV 0.4 2.2 Sp-Pw.03A Sp-Pw.04ANS NS1 S/22/15 TO1S 1.2-Dichloroethane 0.19 PPBV 0.36 1.11 Sp-Pw.10A Sp-Pw.10ANS NS1 S/	LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW.128 59-PW.128.NS NS1 5/22/15 TO1S 1,1-Dichloroethene 970 PPBV 1.0 1.20 59-PW.138 S9-PW.138-NS NS1 5/22/15 TO1S 1,1-Dichloroethene 0 PPBV 3.4 13 59-PW.138 S9-PW.138-NS NS1 5/22/15 TO1S 1,1-Dichloroethene 0 PPBV 0.4 1.22 59-PW.138 S9-PW.38-NS NS1 5/22/15 TO1S 1,2-Dichloroethane 0 PPBV 0.4 1.22 59-PW.038 S9-PW.038-NS NS1 5/22/15 TO1S 1,2-Dichloroethane 0 PPBV 0.4 2.2 59-PW.038 S9-PW.038-NS NS1 5/22/15 TO1S 1,2-Dichloroethane 0 PPBV 0.36 1.11 59-PW.038 S9-PW.04N-NS NS1 5/22/15 TO1S 1,2-Dichloroethane 0 PPBV 0.36 1.11 59-PW.11A S9-PW.10A-NS NS1 5/22/15 TO1S 1,2-Dichloroethane 0	59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	1,1-Dichloroethene	7.5		PPBV	0.3	1.1
59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:43 T015 1,1-Dichloroethnen 0 PPBV 0.32 1.13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 1,1-Dichloroethnen Max 970 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-078 S9-PW-08NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 0.4 0.2 222 59-PW-03A 59-PW-03A-NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 0.4 0.2 24 59-PW-03B 59-PW-03A-NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0.9 PPBV 0.3 1.1 59-PW-10A 59-PW-10A-NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0.9 PPBV 0.33 1.1 59-PW-11B 59-PW-11A-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.33 1.1 59-PW-12B	59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	1,1-Dichloroethene	400		PPBV	280	320
S9-PW-138 S9-PW-138-NS NS1 S/2/2/15 10:43 T015 1,1-Dichloroethane Max 970 S9-PW-138 S9-PW-138-FD FD1 S/22/15 10:43 T015 1,2-Dichloroethane Max 970 S9-PW-07 S9-PW-07-NS NS1 S/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 4.2 12 S9-PW-038 S9-PW-08-NS NS1 S/22/15 11:30 T015 1,2-Dichloroethane 0 PPBV 4.2 22 S9-PW-098 S9-PW-098-NS NS1 S/22/15 11:30 T015 1,2-Dichloroethane 0 PPBV 4.2 24 S9-PW-098 S9-PW-098-NS NS1 S/22/15 11:30 T015 1,2-Dichloroethane 0 PPBV 4.2 24 S9-PW-108 S9-PW-108-NS NS1 S/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.33 1.11 S9-PW-112A S9-PW-112A-NS NS1 S/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.30 1.21 S9-PW-12A S9-PW-12A-NS NS1 S/22/15 10:23 T015 1,2-Di	59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	1,1-Dichloroethene	970		PPBV	100	120
1.1-Dichloroethene Max 970 59-PW-138 59-PW-137-NS FD1 5/22/15 11:05 TO15 1.2-Dichloroethane 0 PPBV 4.2 12 59-PW-08 59-PW-08-NS N51 5/22/15 11:05 TO15 1.2-Dichloroethane 0 PPBV 4.2 12 59-PW-08 59-PW-09A-NS N51 5/22/15 11:30 TO15 1.2-Dichloroethane 0 PPBV 4.2 24 59-PW-09B 59-PW-09B-NS N51 5/22/15 11:45 TO15 1.2-Dichloroethane 0 PPBV 4.2 24 59-PW-10A 59-PW-10A-NS N51 5/22/15 11:45 TO15 1.2-Dichloroethane 0.1 PPBV 0.3 1.11 59-PW-11A 59-PW-10A-NS N51 5/22/15 10:00 TO15 1.2-Dichloroethane 0 PPBV 0.3 1.11 59-PW-12A-NS N51 5/22/15 10:23 TO15 1.2-Dichloroethane 0 PPBV 0.4 1.20 59-PW-13A-NS N51 5/22/15 10:23 TO15 <td>59-PW-13A</td> <td>59-PW-13A-NS</td> <td>NS1</td> <td>5/22/15 10:23</td> <td>TO15</td> <td>1,1-Dichloroethene</td> <td>0</td> <td></td> <td>PPBV</td> <td>3.4</td> <td>13</td>	59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	1,1-Dichloroethene	0		PPBV	3.4	13
S9-PW-13B S9-PW-13B-FD FD1 \$/22/15 10:43 TO15 1,2-Dichloroethane 0 PPBV 0.4 1.2 S9-PW-07 S9-PW-07-NS NS1 \$/22/15 10:05 TO15 1,2-Dichloroethane 0 PPBV 0.7 2.2 S9-PW-03A S9-PW-03A-NS NS1 \$/22/15 11:30 TO15 1,2-Dichloroethane 0 PPBV 4.2 22 S9-PW-03A-NS NS1 \$/22/15 11:30 TO15 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-10A-NS NS1 \$/22/15 11:30 TO15 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-10A-NS NS1 \$/22/15 10:30 TO15 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-11A S9-PW-11A-NS NS1 \$/22/15 10:00 TO15 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-13A S9-PW-13A-NS NS1 \$/22/15 10:03 TO15 1,2-Dichloroethane 0 PPBV 0.36 1.10 S9-PW-13A S9-PW-13A-NS NS1 \$/22/15 10:03	59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	1,1-Dichloroethene	6.4		PPBV	0.32	1.2
S9-PW-07 S9-PW-08 NS1 5/22/15 11:05 T015 1,2-Dichloroethane 0 PPBV 4.2 12 S9-PW-08 S9-PW-09A-NS NS1 5/22/15 8:43 T015 1,2-Dichloroethane 0 PPBV 0.76 2.2 S9-PW-09A-NS NS1 5/22/15 11:45 T015 1,2-Dichloroethane 0 PPBV 4.2 24 S9-PW-09A-NS NS1 5/22/15 11:45 T015 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-10A S9-PW-10A-NS NS1 5/22/15 11:28 T015 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-11A S9-PW-11A-NS NS1 5/22/15 10:00 T015 1,2-Dichloroethane 0 PPBV 0.38 1.1 S9-PW-12A S9-PW-12A-NS NS1 5/22/15 10:03 T015 1,2-Dichloroethane 0 PPBV 0.38 1.1 S9-PW-13A S9-PW-13A-NS NS1 5/22/15 10:03 T015 1,2-Dichloroethane 0 PPBV 0.3 1.2 S9-PW-13B S9-PW-13B-NS NS1 5/22/						1,1-Dichloroethene Max	970				
S9-PW-08 S9-PW-08-NS NS1 5/22/15 8:43 T015 1,2-Dichloroethane 0 PPBV 0.76 2.2 S9-PW-09 S9-PW-09A-NS NS1 5/22/15 11:30 T015 1,2-Dichloroethane 0 PPBV 4 22 S9-PW-09B-NS NS1 5/22/15 T015 1,2-Dichloroethane 0.19 F PPBV 0.36 1.1 S9-PW-10B S9-PW-10B-NS NS1 5/22/15 P015 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-11A S9-PW-11A-NS NS1 5/22/15 P015 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-11A S9-PW-11A-NS NS1 5/22/15 1015 1,2-Dichloroethane 0 PPBV 0.37 1.1 S9-PW-12A S9-PW-12A-NS NS1 5/22/15 1015 1,2-Dichloroethane 0 PPBV 0.43 122 S9-PW-13B S9-PW-13B-NS NS1 5/22/15 1015 Benzene 0 PPBV 0.12 12 S9-PW-13B S9-PW-13B-NS	59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	1,2-Dichloroethane	0		PPBV	0.4	1.2
S9-PW-09A S9-PW-09A-NS NS1 5/22/15 11:30 T015 1,2-Dichloroethane 0 PPBV 4.2 22 S9-PW-09B S9-PW-10A-NS NS1 5/22/15 11:45 T015 1,2-Dichloroethane 0 PPBV 0.15 1.1 S9-PW-10A S9-PW-10A-NS NS1 5/22/15 9:23 T015 1,2-Dichloroethane 0 PPBV 0.36 1.1 S9-PW-11A S9-PW-11A-NS NS1 5/22/15 9:23 T015 1,2-Dichloroethane 0 PPBV 0.38 1.11 S9-PW-11A S9-PW-11A-NS NS1 5/22/15 10:20 T015 1,2-Dichloroethane 0 PPBV 0.38 1.11 S9-PW-12A S9-PW-12A-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.4 1.22 S9-PW-13B S9-PW-13A-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 S9-PW-13B S9-PW-13B-NS NS1 5/22/15 10:43 T015 Benzene 0.4 1.2 1.2 S9-PW-03B S91 5/22	59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	1,2-Dichloroethane	0		PPBV	4.2	12
59-PW-09B 59-PW-09B-NS NS1 \$/22/15 11:15 TO15 1,2-Dichloroethane 0.19 F PPBV 0.15 1.11 59-PW-108 59-PW-108-NS NS1 \$/22/15 9:23 TO15 1,2-Dichloroethane 0 PPBV 0.36 1.11 59-PW-118 59-PW-11A-NS NS1 \$/22/15 9:23 TO15 1,2-Dichloroethane 0 PPBV 0.38 1.11 59-PW-118 59-PW-12A S9-PW-12A S9-PW-12A S9-PW-12A S9-PW-12A S9-PW-12A S9-PW-12B-NS NS1 \$/22/15 12:Dichloroethane 0 PPBV 0.38 1.11 59-PW-12A 59-PW-12B-NS NS1 \$/22/15 12:Dichloroethane 0 PPBV 0.4 1.23 59-PW-13A 59-PW-13B-NS NS1 \$/22/15 10:23 TO15 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 \$/22/15 10:33 TO15 Benzene 0 PPBV 0.4 1.2 59-PW-07 59-PW-07-NS NS1 \$/22/15	59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	1,2-Dichloroethane	0		PPBV	0.76	2.2
59-PW-10A 59-PW-10A-NS NS1 5/29/15 11:28 T015 1,2-Dichloroethane 0.19 F PPBV 0.15 1.1 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:45 T015 1,2-Dichloroethane 0 PPBV 0.38 1.11 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 1,2-Dichloroethane 0 PPBV 0.38 1.11 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:00 T015 1,2-Dichloroethane 0 PPBV 0.38 3.12 59-PW-12A 59-PW-13A-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13A-NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Benzene 2.4 PPBV 0.14 1.2 59-PW-03 59-PW-03A-NS NS1 5/22/15 11:45 T015 Benzene 2.4 PPBV 0.4 2.2 59-PW-03A	59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	1,2-Dichloroethane	0		PPBV	4	22
59-PW-108 59-PW-108-NS NS1 5/22/15 9:23 T015 1,2-Dichloroethane 0 PPBV 0.36 1.1 59-PW-11A S9-PW-11A-NS NS1 5/22/15 9:45 T015 1,2-Dichloroethane 0 PPBV 0.37 1.1 59-PW-12A S9-PW-12A-NS NS1 5/22/15 12:05 T015 1,2-Dichloroethane 0 PPBV 0.38 1.2 59-PW-12A S9-PW-12A-NS NS1 5/22/15 12:05 T015 1,2-Dichloroethane 0 PPBV 4.3 13 59-PW-13A S9-PW-13A-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 4.3 13 59-PW-13B S9-PW-13B-NS NS1 5/22/15 10:43 T015 Benzene 2.4 PPBV 0.14 1.2 59-PW-03B S9-PW-07-NS NS1 5/22/15 10:43 T015 Benzene 0 PPBV 4.3 12 59-PW-03B S9-PW-08-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 4.3 12 59-PW-03A S9-PW-08-NS NS1 <td>59-PW-09B</td> <td>59-PW-09B-NS</td> <td>NS1</td> <td>5/22/15 11:45</td> <td>TO15</td> <td>1,2-Dichloroethane</td> <td>0</td> <td></td> <td>PPBV</td> <td>4.2</td> <td>24</td>	59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	1,2-Dichloroethane	0		PPBV	4.2	24
59-PW-11A S9-PW-11A-NS NS1 \$/22/15 7015 1,2-Dichloroethane 0 PPBV 0.37 1.1 59-PW-11B 59-PW-11B-NS NS1 \$/22/15 10:00 TO15 1,2-Dichloroethane 0 PPBV 0.38 1.1 59-PW-12A 59-PW-12A-NS NS1 \$/22/15 12:05 TO15 1,2-Dichloroethane 0 PPBV 0.3 3 1.3 59-PW-12A 59-PW-13A-NS NS1 \$/22/15 10:23 TO15 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 TO15 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Benzene 0.19 PPBV 0.4 1.2 59-PW-13B 59-PW-07-NS NS1 5/22/15 11:05 TO15 Benzene 0.11 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 <	59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	1,2-Dichloroethane	0.19	F	PPBV	0.15	1.1
59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 1,2-Dichloroethane 0 PPBV 0.38 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:28 T015 1,2-Dichloroethane 0 PPBV 20 320 59-PW-12B 59-PW-13B-NS NS1 5/22/15 12:28 T015 1,2-Dichloroethane 0 PPBV 20 120 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 Benzene 0.9 PPBV 0.4 1.2 59-PW-13B-FD FD1 5/22/15 11:05 T015 Benzene 0.4 PPBV 0.14 1.2 59-PW-07-NS NS1 5/22/15 11:05 T015 Benzene 0.43 J PPBV 0.27 2.2 59-PW-03A 59-PW-03A-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 0.11 1.1 59-PW-03A 59-PW-03A-NS NS1 5/22/15 11:30	59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	1,2-Dichloroethane	0		PPBV	0.36	1.1
59-PW-12A 59-PW-12A-NS NS1 5/2/15 12:0 12:0 12:0 PPBV 56 320 59-PW-12B 59-PW-12B-NS NS1 5/2/15 12:0 1,2-0 0 PPBV 20 120 59-PW-13B 59-PW-13A-NS NS1 5/2/15 10:23 T015 1,2-0 0 PPBV 4.3 13 59-PW-13B 59-PW-13B-NS NS1 5/2/15 10:23 T015 1,2-0 1/2-0 0 PPBV 0.4 12 59-PW-13B 59-PW-13B-NS NS1 5/2/15 10:43 T015 Benzene 0 PPBV 0.14 1.2 59-PW-07 59-PW-07-NS NS1 5/2/15 11:05 T015 Benzene 0 PPBV 0.14 1.2 59-PW-08 59-PW-09A-NS NS1 5/2/15 11:05 Benzene 0 PPBV 0.11 1.1 59-PW-09A-NS NS1 5/2/15 11:13 T015 Benzene 0 PPBV 0.11 1.1 59-PW-10A 59-PW-10B-NS NS1 5/	59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	1,2-Dichloroethane	0		PPBV	0.37	1.1
59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 1,2-Dichloroethane 0 PPBV 20 120 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Benzene 0.19 PPBV 0.14 1.2 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 T015 Benzene 0 PPBV 0.27 2.2 59-PW-08 59-PW-09A-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 4.3 22 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 4.3 22 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 0.11 1.1 59-PW-104 59-PW-104-NS NS1 5/22/1	59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	1,2-Dichloroethane	0		PPBV	0.38	1.1
S9-PW-13A S9-PW-13A-NS NS1 \$/22/15 10:23 T015 1,2-Dichloroethane 0 PPBV 4.3 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 1,2-Dichloroethane 0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-NS FD1 5/22/15 10:43 T015 Benzene 0.19 PPBV 0.14 1.2 59-PW-07 59-PW-07NS NS1 5/22/15 10:43 T015 Benzene 0 PPBV 0.14 1.2 59-PW-07 59-PW-07NS NS1 5/22/15 18:43 T015 Benzene 0.43 J PPBV 0.27 2.2 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 0.11 1.1 59-PW-09B 59-PW-10A-NS NS1 5/22/15 11:28 T015 Benzene 0.6 PPBV 0.13 1.1 59-PW-10A 59-PW-10A-NS NS1 5/22/15 10:23 T015 Benzene 2.2	59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	1,2-Dichloroethane	0		PPBV	56	320
59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 1,2-Dichloroethane 0.0 PPBV 0.4 1.2 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Benzene 2.4 PPBV 0.14 1.2 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 TO15 Benzene 0 PPBV 0.14 1.2 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 TO15 Benzene 0 PPBV 0.14 1.2 59-PW-08 59-PW-09A-NS NS1 5/22/15 11:45 TO15 Benzene 0.4 PPBV 0.17 2.12 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 TO15 Benzene 0 PPBV 0.11 1.1 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:45 TO15 Benzene 4.7 PPBV 0.11 1.1 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:25 TO15 Benzene 2.2 PBV <td< td=""><td>59-PW-12B</td><td>59-PW-12B-NS</td><td>NS1</td><td>5/22/15 12:28</td><td>TO15</td><td>1,2-Dichloroethane</td><td>0</td><td></td><td>PPBV</td><td>20</td><td>120</td></td<>	59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	1,2-Dichloroethane	0		PPBV	20	120
12-Dichloroethane Max 0.19 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 Benzene 2.4 PPBV 0.14 1.2 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 T015 Benzene 0 PPBV 0.15 12 59-PW-08 59-PW-08-NS NS1 5/22/15 18:43 T015 Benzene 0.43 J PPBV 0.27 2.2 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Benzene 0.43 J PPBV 0.12 2.2 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 0.11 1.1 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:28 T015 Benzene 4.7 PPBV 0.13 1.11 59-PW-10B 59-PW-10A-NS NS1 5/22/15 9:23 T015 Benzene 2.2 PPBV 0.13 1.11 59-PW-11A 59-PW-11A-NS NS1 5/22/1	59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	1,2-Dichloroethane	0		PPBV	4.3	13
59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 Benzene 2.4 PPBV 0.14 1.2 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 T015 Benzene 0 PPBV 1.5 12 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 T015 Benzene 0.43 J PPBV 0.27 2.2 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 4.3 22 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 4.5 24 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:45 T015 Benzene 4.7 PPBV 0.11 1.1 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Benzene 2.2 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 10:00 T015 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:00 </td <td>59-PW-13B</td> <td>59-PW-13B-NS</td> <td>NS1</td> <td>5/22/15 10:43</td> <td>TO15</td> <td>1,2-Dichloroethane</td> <td>0</td> <td></td> <td>PPBV</td> <td>0.4</td> <td>1.2</td>	59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	1,2-Dichloroethane	0		PPBV	0.4	1.2
59-PW-07 59-PW-07-NS NS1 5/2/15 11:05 T015 Benzene 0 PPBV 1.5 12 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 T015 Benzene 0.43 J PPBV 0.27 2.2 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 4.3 22 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 4.3 22 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:45 T015 Benzene 4.7 PPBV 0.11 1.1 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Benzene 6.6 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 10:23 T015 Benzene 3.5 PPBV 0.13 1.1 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:05 T015 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:23 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1,2-Dichloroethane Max</td> <td>0.19</td> <td></td> <td></td> <td></td> <td></td>						1,2-Dichloroethane Max	0.19				
59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 T015 Benzene 0.43 J PPBV 0.27 2.2 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Benzene 0 PPBV 4.3 22 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 4.5 24 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:28 T015 Benzene 4.7 PPBV 0.11 1.1 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Benzene 6.6 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:23 T015 Benzene 2.2 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 10:50 T015 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:50 T015 Benzene 0 PPBV 22 120<	59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Benzene	2.4		PPBV	0.14	1.2
59-PW-09A 59-PW-09A-NS NS1 5/2/15 11:30 T015 Benzene 0 PPBV 4.3 22 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Benzene 0 PPBV 4.5 24 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:28 T015 Benzene 4.7 PPBV 0.11 1.1 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Benzene 6.6 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Benzene 2.2 PPBV 0.13 1.1 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:00 T015 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12A-NS NS1 5/22/15 10:23 T015 Benzene 5.4 J PBV 1.5 131 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 </td <td>59-PW-07</td> <td>59-PW-07-NS</td> <td>NS1</td> <td>5/22/15 11:05</td> <td>TO15</td> <td>Benzene</td> <td>0</td> <td></td> <td>PPBV</td> <td>1.5</td> <td>12</td>	59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Benzene	0		PPBV	1.5	12
59-PW-09B 59-PW-09B-NS NS1 5/2/15 11:45 T015 Benzene 0 PPBV 4.5 24 59-PW-10A 59-PW-10A-NS NS1 5/29/15 11:28 T015 Benzene 4.7 PPBV 0.11 1.1 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Benzene 6.6 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Benzene 2.2 PPBV 0.13 1.1 59-PW-11A 59-PW-11B-NS NS1 5/22/15 9:45 T015 Benzene 3.5 PPBV 0.14 1.1 59-PW-11B 59-PW-12A-NS NS1 5/22/15 10:00 T015 Benzene 0 PPBV 0.0 320 59-PW-12B 59-PW-12A-NS NS1 5/22/15 10:23 T015 Benzene 0 PPBV 22 120 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 Benzene 5.4 J PPBV 1.5 131 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43<	59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Benzene	0.43	J	PPBV	0.27	2.2
59-PW-10A 59-PW-10A-NS NS1 5/2/15 11:28 TO15 Benzene 4.7 PPBV 0.11 1.1 59-PW-10B 59-PW-10B-NS NS1 5/2/15 9:23 TO15 Benzene 6.6 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/2/15 9:45 TO15 Benzene 2.2 PPBV 0.13 1.1 59-PW-11B 59-PW-11B-NS NS1 5/2/15 9:45 TO15 Benzene 3.5 PPBV 0.14 1.1 59-PW-11B 59-PW-11B-NS NS1 5/2/15 10:00 TO15 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/2/15 12:05 TO15 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12B-NS NS1 5/2/15 12:28 TO15 Benzene 0 PPBV 1.5 13 59-PW-13A 59-PW-13B-NS NS1 5/2/15 10:23 TO15 Benzene 5.4 J PPBV 0.14 1.2 <td>59-PW-09A</td> <td>59-PW-09A-NS</td> <td>NS1</td> <td>5/22/15 11:30</td> <td>TO15</td> <td>Benzene</td> <td>0</td> <td></td> <td>PPBV</td> <td>4.3</td> <td>22</td>	59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Benzene	0		PPBV	4.3	22
59-PW-10B 59-PW-10B-NS NS1 5/2/15 9:23 T015 Benzene 6.6 PPBV 0.13 1.1 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Benzene 2.2 PPBV 0.13 1.1 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:00 T015 Benzene 0 PPBV 0.0 320 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 Benzene 0 PPBV 22 120 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Benzene 5.4 J PPBV 0.14 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Benzene 2.5 PPBV 0.14 1.	59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Benzene	0		PPBV	4.5	24
59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 TO15 Benzene 2.2 PPBV 0.13 1.1 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 TO15 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 TO15 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:05 TO15 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 TO15 Benzene 0 PPBV 22 120 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Benzene 5.4 J PPBV 1.5 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 TO15 Benzene 2.5 PPBV 0.14 1.2 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Benzene 6.6 5.5 PPBV 0.24	59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Benzene	4.7		PPBV	0.11	1.1
59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 TO15 Benzene 3.5 PPBV 0.14 1.1 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 TO15 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 TO15 Benzene 0 PPBV 22 120 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Benzene 5.4 J PPBV 1.5 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 TO15 Benzene 5.4 J PPBV 1.5 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Benzene 2.5 PPBV 0.14 1.2 Benzene Max 6.6 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2 Septem 13B - 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2 <td>59-PW-10B</td> <td>59-PW-10B-NS</td> <td>NS1</td> <td>5/22/15 9:23</td> <td>TO15</td> <td>Benzene</td> <td>6.6</td> <td></td> <td>PPBV</td> <td>0.13</td> <td>1.1</td>	59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Benzene	6.6		PPBV	0.13	1.1
59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 TO15 Benzene 0 PPBV 60 320 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 TO15 Benzene 0 PPBV 22 120 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Benzene 5.4 J PPBV 1.5 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 TO15 Benzene 2.5 PPBV 0.14 1.2 Benzene Max 6.6 59-PW-13B-NS FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2	59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Benzene	2.2		PPBV	0.13	1.1
59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 TO15 Benzene 0 PPBV 22 120 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Benzene 5.4 J PPBV 1.5 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Benzene 2.5 PPBV 0.14 1.2 Benzene Max 6.6 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2	59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Benzene	3.5		PPBV	0.14	1.1
59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Benzene 5.4 J PPBV 1.5 13 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Benzene 2.5 PPBV 0.14 1.2 Benzene Max 6.6 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2	59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Benzene	0		PPBV	60	320
59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Benzene Max 2.5 PPBV 0.14 1.2 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2	59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Benzene	0		PPBV	22	120
S9-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 6.6 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2	59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Benzene	5.4	J	PPBV	1.5	13
59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 0.24 1.2	59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Benzene	2.5		PPBV	0.14	1.2
						Benzene Max	6.6				
59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 TO15 Carbon Tetrachloride 0 PPBV 2.4 12	59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Carbon Tetrachloride	0		PPBV	0.24	1.2
	59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Carbon Tetrachloride	0		PPBV	2.4	12

59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 T015 Carbon Tetrachloride 1.2 J PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Carbon Tetrachloride 0 PPBV 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-10A 59-PW-10A-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 10:00 T015 Carbon Tetrachloride 0 PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12B-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0	DL RL 0.44 2 3.8 2 4 2 0.16 1 0.21 1 0.22 1 0.22 1 53 33
59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Carbon Tetrachloride 0 PPBV 59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-10A 59-PW-10A-NS NS1 5/22/15 11:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 10:00 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS N	3.8 3.8 4 3.8 0.16 1 0.21 1 0.22 1 0.22 1
59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-10A 59-PW-10A-NS NS1 5/29/15 11:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 Carbon Tetrachloride 0 PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride Max 1.2	4 0.16 0.21 0.22 0.22 1
59-PW-10A 59-PW-10A-NS NS1 5/29/15 11:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 Carbon Tetrachloride 0.39 J PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Chlorobenzene 0	0.1610.2110.2210.221
59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 Carbon Tetrachloride 0.39 J PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 Chlorobenzene 0	0.21 1 0.22 1 0.22 1
59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 T015 Carbon Tetrachloride 0 PPBV 59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 T015 Carbon Tetrachloride 0.39 J PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-07-NS NS1 5/22/15 10:43 T015 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 <td>0.22 1 0.22 1</td>	0.22 1 0.22 1
59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 TO15 Carbon Tetrachloride 0.39 J PPBV 59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 TO15 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 TO15 Carbon Tetrachloride 0 PPBV 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 TO15 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Carbon Tetrachloride 0 PPBV 59-PW-03 59-PW-07-NS NS1 5/22/15 10:43 TO15 Chlorobenzene 0 PPBV 59-PW-08 59-PW-07-NS NS1 5/22/15 11:05 TO15 Chlorobenzene 0	0.22 1
59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 T015 Carbon Tetrachloride 0 PPBV 59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 T015 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 T015 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Chlorobenzene 0 PPBV	
59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 T015 Carbon Tetrachloride 0 PPBV 59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride Max 1.2 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 T015 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 11:05 T015 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 11:30 T015 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Chlorobenzene 0 PPBV	53 3
59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride 0 PPBV 59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 T015 Carbon Tetrachloride Max 1.2 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 T015 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 T015 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 T015 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 T015 Chlorobenzene 0 PPBV	55 57
59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Carbon Tetrachloride Carbon Tetrachloride Max 1.2 59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 TO15 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 TO15 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV	19 13
S9-PW-13B S9-PW-13B-FD FD1 5/22/15 10:43 TO15 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 TO15 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 TO15 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV	2.5
59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Chlorobenzene 0 PPBV 59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 TO15 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 TO15 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV	0.23 1
59-PW-07 59-PW-07-NS NS1 5/22/15 TO15 Chlorobenzene 0 PPBV 59-PW-08 59-PW-08-NS NS1 5/22/15 11:05 TO15 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV	
59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 TO15 Chlorobenzene 0 PPBV 59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV	0.21 1
59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chlorobenzene 0 PPBV	2.1
	0.39 2
	4.9
59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 TO15 Chlorobenzene 0 PPBV	5.2
59-PW-10A 59-PW-10A-NS NS1 5/29/15 11:28 TO15 Chlorobenzene 0 PPBV	0.23 1
59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 TO15 Chlorobenzene 0 PPBV	0.18 1
59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 TO15 Chlorobenzene 0 PPBV	0.19 1
59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 TO15 Chlorobenzene 0.2 J PPBV	0.2 1
59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 TO15 Chlorobenzene 0 PPBV	69 32
59-PW-12B 59-PW-12B-NS NS1 5/22/15 12:28 TO15 Chlorobenzene 0 PPBV	25 12
59-PW-13A 59-PW-13A-NS NS1 5/22/15 10:23 TO15 Chlorobenzene 0 PPBV	2.2
59-PW-13B 59-PW-13B-NS NS1 5/22/15 10:43 TO15 Chlorobenzene 0 PPBV	0.21 1
Chlorobenzene Max 0.2	
59-PW-13B 59-PW-13B-FD FD1 5/22/15 10:43 TO15 Chloroform 2.9 PPBV	0.24 1
59-PW-07 59-PW-07-NS NS1 5/22/15 11:05 TO15 Chloroform 3.7 J PPBV	2.5
59-PW-08 59-PW-08-NS NS1 5/22/15 8:43 TO15 Chloroform 1.8 J PPBV	0.46 2
59-PW-09A 59-PW-09A-NS NS1 5/22/15 11:30 TO15 Chloroform 4.8 J PPBV	3.8
59-PW-09B 59-PW-09B-NS NS1 5/22/15 11:45 TO15 Chloroform 6.9 J PPBV	4
59-PW-10A 59-PW-10A-NS NS1 5/29/15 11:28 TO15 Chloroform 0.35 F PPBV	0.15 1
59-PW-10B 59-PW-10B-NS NS1 5/22/15 9:23 TO15 Chloroform 0 PPBV	0.22 1
59-PW-11A 59-PW-11A-NS NS1 5/22/15 9:45 TO15 Chloroform 0.46 J PPBV	0.22 1
59-PW-11B 59-PW-11B-NS NS1 5/22/15 10:00 TO15 Chloroform 1.6 PPBV	
59-PW-12A 59-PW-12A-NS NS1 5/22/15 12:05 TO15 Chloroform 85 J PPBV	0.23 1

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Chloroform	0		PPBV	20	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Chloroform	0		PPBV	2.6	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Chloroform	2.7		PPBV	0.24	1.2
					Chloroform Max	85				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Chloromethane	0		PPBV	1.1	12
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Chloromethane	0		PPBV	11	120
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Chloromethane	0		PPBV	2.1	22
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Chloromethane	0		PPBV	10	90
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Chloromethane	0		PPBV	11	95
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Chloromethane	9	F	PPBV	1.1	11
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Chloromethane	0		PPBV	0.98	11
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Chloromethane	1.5	J	PPBV	1	11
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Chloromethane	1.4	J	PPBV	1	11
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Chloromethane	0		PPBV	140	1300
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Chloromethane	0		PPBV	52	460
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Chloromethane	0		PPBV	12	130
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Chloromethane	0		PPBV	1.1	12
					Chloromethane Max	9				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	cis-1,2-Dichloroethene	7.7		PPBV	0.32	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	cis-1,2-Dichloroethene	5.4	J	PPBV	3.3	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	cis-1,2-Dichloroethene	3.2		PPBV	0.61	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	cis-1,2-Dichloroethene	33		PPBV	5.1	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	cis-1,2-Dichloroethene	42		PPBV	5.4	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	cis-1,2-Dichloroethene	0		PPBV	0.26	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	cis-1,2-Dichloroethene	0		PPBV	0.29	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	cis-1,2-Dichloroethene	0		PPBV	0.3	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	cis-1,2-Dichloroethene	0.34	J	PPBV	0.31	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	cis-1,2-Dichloroethene	14000		PPBV	72	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	cis-1,2-Dichloroethene	450		PPBV	26	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	cis-1,2-Dichloroethene	0		PPBV	3.4	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	cis-1,2-Dichloroethene	7.6		PPBV	0.32	1.2
					cis-1,2-Dichloroethene Max	14000				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Dichlorodifluoromethane	1	J	PPBV	0.15	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Dichlorodifluoromethane	0		PPBV	1.5	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Dichlorodifluoromethane	0.44	J	PPBV	0.28	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Dichlorodifluoromethane	0		PPBV	3.4	22

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Dichlorodifluoromethane	0		PPBV	3.6	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Dichlorodifluoromethane	0.66	F	PPBV	0.24	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Dichlorodifluoromethane	0.94	J	PPBV	0.13	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Dichlorodifluoromethane	0.68	J	PPBV	0.14	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Dichlorodifluoromethane	1	J	PPBV	0.14	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Dichlorodifluoromethane	0		PPBV	48	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Dichlorodifluoromethane	0		PPBV	17	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Dichlorodifluoromethane	0		PPBV	1.6	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Dichlorodifluoromethane	1.1	J	PPBV	0.15	1.2
					Dichlorodifluoromethane Max	1.1				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Ethylbenzene	7.5		PPBV	0.25	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Ethylbenzene	9.2	J	PPBV	2.6	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Ethylbenzene	6.8		PPBV	0.47	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Ethylbenzene	8.5	J	PPBV	4.7	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Ethylbenzene	11	J	PPBV	5	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Ethylbenzene	20		PPBV	0.22	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Ethylbenzene	8.5		PPBV	0.22	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Ethylbenzene	8.2		PPBV	0.23	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Ethylbenzene	6.7		PPBV	0.24	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Ethylbenzene	0		PPBV	67	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Ethylbenzene	0		PPBV	24	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Ethylbenzene	15		PPBV	2.6	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Ethylbenzene	7.3		PPBV	0.25	1.2
					Ethylbenzene Max	20				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Freon 113	0		PPBV	0.28	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Freon 113	0		PPBV	2.8	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Freon 113	0		PPBV	0.52	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Freon 113	0		PPBV	7.1	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Freon 113	0		PPBV	7.5	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Freon 113	0		PPBV	0.21	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Freon 113	0		PPBV	0.24	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Freon 113	0		PPBV	0.25	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Freon 113	0		PPBV	0.26	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Freon 113	0		PPBV	100	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Freon 113	0		PPBV	36	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Freon 113	0		PPBV	2.9	13

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	T015	Freon 113	0		PPBV	0.27	1.2
					Freon 113 Max	0				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Isopropanol	340		PPBV	0.88	4.8
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Isopropanol	300		PPBV	9	49
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Isopropanol	210		PPBV	1.6	9
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Isopropanol	220		PPBV	11	90
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Isopropanol	290		PPBV	12	95
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Isopropanol	3400	J	PPBV	0.89	4.6
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Isopropanol	270		PPBV	0.78	4.2
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Isopropanol	320		PPBV	0.81	4.4
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Isopropanol	180		PPBV	0.84	4.5
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Isopropanol	430	J	PPBV	160	1300
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Isopropanol	280	J	PPBV	56	460
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Isopropanol	6100	J	PPBV	9.3	51
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Isopropanol	380		PPBV	0.87	4.7
					Isopropanol Max	6100				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	m,p-Xylenes	30		PPBV	0.18	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	m,p-Xylenes	31		PPBV	1.8	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	m,p-Xylenes	26		PPBV	0.34	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	m,p-Xylenes	30		PPBV	1.9	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	m,p-Xylenes	41		PPBV	2	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	m,p-Xylenes	62		PPBV	0.21	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	m,p-Xylenes	39		PPBV	0.16	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	m,p-Xylenes	35		PPBV	0.16	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	m,p-Xylenes	27		PPBV	0.17	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	m,p-Xylenes	79	J	PPBV	27	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	m,p-Xylenes	40	J	PPBV	9.7	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	m,p-Xylenes	52		PPBV	1.9	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	m,p-Xylenes	30		PPBV	0.18	1.2
					m,p-Xylenes Max	79				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Methylene Chloride	0		PPBV	0.56	12
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Methylene Chloride	0		PPBV	5.8	120
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Methylene Chloride	0		PPBV	1	22
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Methylene Chloride	0		PPBV	6	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Methylene Chloride	0		PPBV	6.4	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Methylene Chloride	0		PPBV	0.6	11

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Methylene Chloride	0		PPBV	0.5	11
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Methylene Chloride	0		PPBV	0.52	11
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Methylene Chloride	0		PPBV	0.53	11
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Methylene Chloride	0		PPBV	86	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Methylene Chloride	0		PPBV	31	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Methylene Chloride	0		PPBV	6	130
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Methylene Chloride	0		PPBV	0.56	12
					Methylene Chloride Max	0				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Non-methane organic carbons	880		PPBV	24	24
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Non-methane organic carbons	3600		PPBV	250	250
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Non-methane organic carbons	930		PPBV	45	45
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Non-methane organic carbons	12000		PPBV	450	450
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Non-methane organic carbons	17000		PPBV	480	480
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Non-methane organic carbons	2400		PPBV	23	23
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Non-methane organic carbons	580		PPBV	21	21
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Non-methane organic carbons	830		PPBV	22	22
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Non-methane organic carbons	890		PPBV	23	23
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Non-methane organic carbons	140000		PPBV	6400	6400
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Non-methane organic carbons	50000		PPBV	2300	2300
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Non-methane organic carbons	2300		PPBV	250	250
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Non-methane organic carbons	900		PPBV	24	24
					Non-methane organic carbons Ma	140000				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	o-Xylene	6.3		PPBV	0.29	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	o-Xylene	8.4	J	PPBV	3	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	o-Xylene	4.9		PPBV	0.55	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	o-Xylene	6.7	J	PPBV	2.7	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	o-Xylene	9.8	J	PPBV	2.9	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	o-Xylene	13		PPBV	0.16	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	o-Xylene	8.7		PPBV	0.26	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	o-Xylene	7.1		PPBV	0.27	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	o-Xylene	5.8		PPBV	0.28	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	o-Xylene	0		PPBV	38	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	o-Xylene	15	J	PPBV	14	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	o-Xylene	12	J	PPBV	3.1	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	o-Xylene	6.1		PPBV	0.29	1.2
					o-Xylene Max	15				

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Tetrachloroethene	6.1		PPBV	0.15	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Tetrachloroethene	11	J	PPBV	1.5	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Tetrachloroethene	12		PPBV	0.28	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Tetrachloroethene	24		PPBV	5.7	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Tetrachloroethene	24		PPBV	6	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Tetrachloroethene	0.46	F	PPBV	0.26	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Tetrachloroethene	0.73	J	PPBV	0.13	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Tetrachloroethene	120		PPBV	0.14	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Tetrachloroethene	88		PPBV	0.14	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Tetrachloroethene	0		PPBV	81	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Tetrachloroethene	0		PPBV	29	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Tetrachloroethene	3.3	J	PPBV	1.6	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Tetrachloroethene	6.1		PPBV	0.14	1.2
					Tetrachloroethene Max	120				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Toluene	16		PPBV	0.16	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Toluene	18		PPBV	1.7	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Toluene	15		PPBV	0.31	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Toluene	25		PPBV	2.7	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Toluene	39		PPBV	2.9	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Toluene	33		PPBV	0.26	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Toluene	29		PPBV	0.15	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Toluene	31		PPBV	0.15	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Toluene	26		PPBV	0.16	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Toluene	72	J	PPBV	39	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Toluene	33	J	PPBV	14	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Toluene	43		PPBV	1.8	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Toluene	15		PPBV	0.16	1.2
					Toluene Max	72				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	trans-1,2-Dichloroethene	0		PPBV	0.46	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	trans-1,2-Dichloroethene	0		PPBV	4.8	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	trans-1,2-Dichloroethene	0		PPBV	0.87	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	trans-1,2-Dichloroethene	28		PPBV	4.6	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	trans-1,2-Dichloroethene	32		PPBV	4.9	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	trans-1,2-Dichloroethene	0		PPBV	0.33	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	trans-1,2-Dichloroethene	0		PPBV	0.41	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	trans-1,2-Dichloroethene	0		PPBV	0.43	1.1

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	trans-1,2-Dichloroethene	0		PPBV	0.44	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	trans-1,2-Dichloroethene	1400		PPBV	66	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	trans-1,2-Dichloroethene	140		PPBV	24	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	trans-1,2-Dichloroethene	0		PPBV	4.9	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	trans-1,2-Dichloroethene	0		PPBV	0.46	1.2
					trans-1,2-Dichloroethene Max	1400				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Trichloroethene	180		PPBV	0.3	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Trichloroethene	4400		PPBV	3.1	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Trichloroethene	600		PPBV	0.57	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Trichloroethene	14000		PPBV	4.7	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Trichloroethene	19000		PPBV	4.9	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Trichloroethene	0.64	F	PPBV	0.22	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Trichloroethene	0.85	U	PPBV	0.27	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Trichloroethene	71		PPBV	0.28	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Trichloroethene	270		PPBV	0.29	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Trichloroethene	160000		PPBV	66	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Trichloroethene	59000		PPBV	24	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Trichloroethene	16	U	PPBV	3.2	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Trichloroethene	180		PPBV	0.3	1.2
					Trichloroethene Max	160000				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Trichlorofluoromethane	0.41	J	PPBV	0.19	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Trichlorofluoromethane	0		PPBV	2	12
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Trichlorofluoromethane	0.37	J	PPBV	0.37	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Trichlorofluoromethane	0		PPBV	2	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Trichlorofluoromethane	0		PPBV	2.2	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Trichlorofluoromethane	0.42	F	PPBV	0.21	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Trichlorofluoromethane	0.42	J	PPBV	0.17	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Trichlorofluoromethane	0.35	J	PPBV	0.18	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Trichlorofluoromethane	0.42	J	PPBV	0.18	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Trichlorofluoromethane	0		PPBV	29	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Trichlorofluoromethane	0		PPBV	10	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Trichlorofluoromethane	0		PPBV	2.1	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Trichlorofluoromethane	0.43	J	PPBV	0.19	1.2
					Trichlorofluoromethane Max	0.43				
59-PW-13B	59-PW-13B-FD	FD1	5/22/15 10:43	TO15	Vinyl Chloride	0		PPBV	0.41	1.2
59-PW-07	59-PW-07-NS	NS1	5/22/15 11:05	TO15	Vinyl Chloride	0		PPBV	4.3	12

		SAMPLE		ANALYTICAL			EPA			
LOCATION	SAMPLE_NAME	CODE	SAMPLE DATE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-08	59-PW-08-NS	NS1	5/22/15 8:43	TO15	Vinyl Chloride	0		PPBV	0.78	2.2
59-PW-09A	59-PW-09A-NS	NS1	5/22/15 11:30	TO15	Vinyl Chloride	0		PPBV	7.3	22
59-PW-09B	59-PW-09B-NS	NS1	5/22/15 11:45	TO15	Vinyl Chloride	0		PPBV	7.7	24
59-PW-10A	59-PW-10A-NS	NS1	5/29/15 11:28	TO15	Vinyl Chloride	0		PPBV	0.19	1.1
59-PW-10B	59-PW-10B-NS	NS1	5/22/15 9:23	TO15	Vinyl Chloride	0		PPBV	0.37	1.1
59-PW-11A	59-PW-11A-NS	NS1	5/22/15 9:45	TO15	Vinyl Chloride	0		PPBV	0.38	1.1
59-PW-11B	59-PW-11B-NS	NS1	5/22/15 10:00	TO15	Vinyl Chloride	0		PPBV	0.39	1.1
59-PW-12A	59-PW-12A-NS	NS1	5/22/15 12:05	TO15	Vinyl Chloride	0		PPBV	100	320
59-PW-12B	59-PW-12B-NS	NS1	5/22/15 12:28	TO15	Vinyl Chloride	0		PPBV	37	120
59-PW-13A	59-PW-13A-NS	NS1	5/22/15 10:23	TO15	Vinyl Chloride	0		PPBV	4.4	13
59-PW-13B	59-PW-13B-NS	NS1	5/22/15 10:43	TO15	Vinyl Chloride	0		PPBV	0.41	1.2
					Vinyl Chloride Max	0				
					Grand Max	160000				

DL = laboratory detection limit

FD1 = field duplicate sample

Max = maximum

NS1 = normal sample

ppbv = parts per billion by volume

RL = laboratory reporting limit

EPA Flags:

F = detected between the laboratory J = detection limit and reporting limit

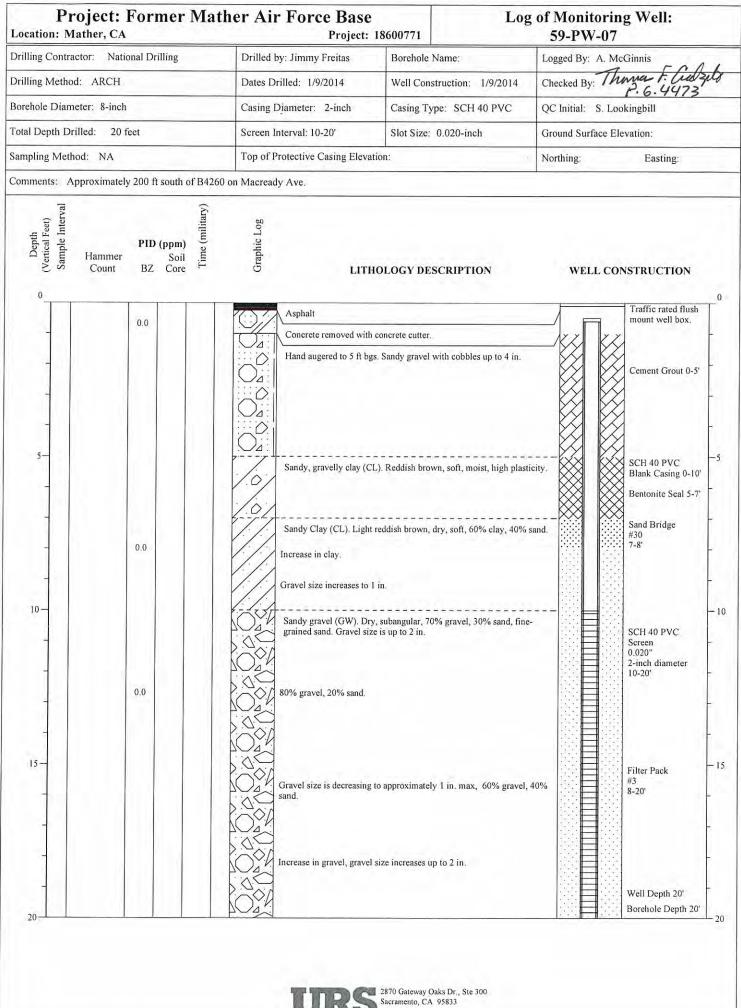
J = estimated concentration

U = not detected

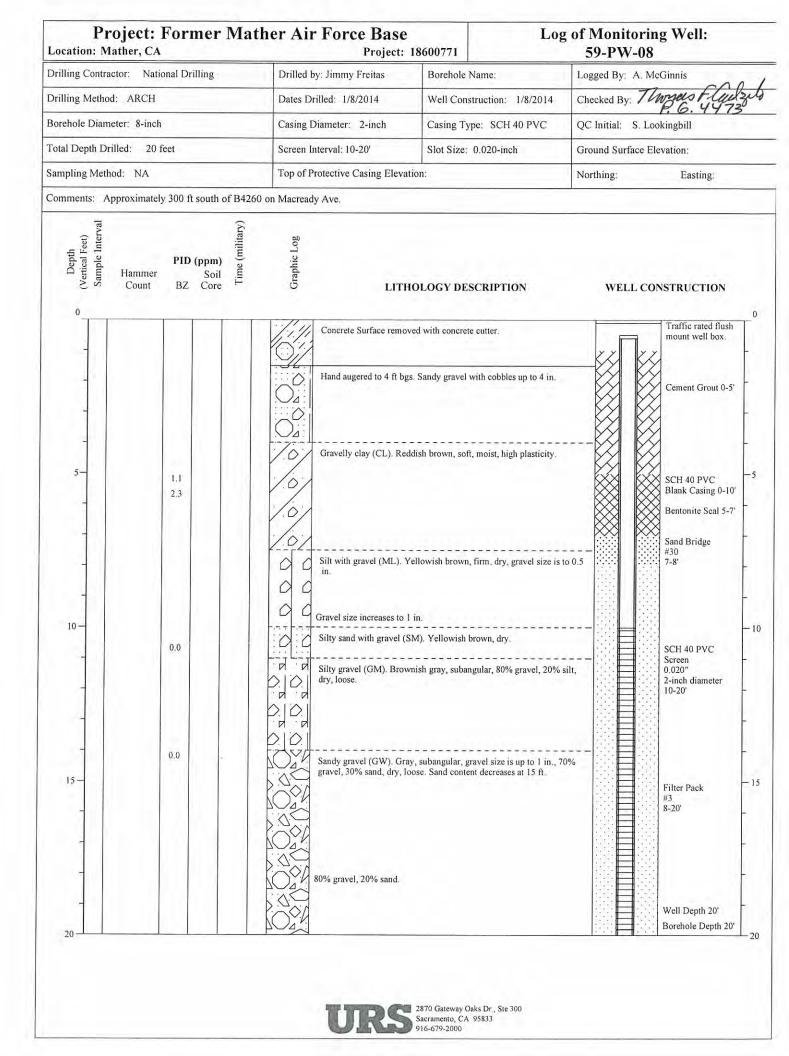
			h /#\-	01 =				9-PW-05	wen ID.	59-PW-					_
orehole Diam. (in.): 14		tal Dept				Projec			Cito: Form		-			_	
orthing (ft): 1967678.49		sting (ft)			10		umber: 19			ner Mather Al By: T. Danie		G			-
rill Start Date: 10-19-2009		urt Time				Logge		Sperber Wollo				.u.			_
rill Finish Date: 10-20-2009		ish Tim						WDC Exploration Wells		mentation:	PID				-
epth 1st H ₂ O (ft): N/A		te / Tim						nod: ARCH SpeedStar 30K							-
epth H ₂ O After Drilling (ft): N/	D <u>a</u>	te / Tim	e: N/A	<u> </u>		Driller	's Name:	Joe Zimmer			T '				
omments: west of hanger								Well Comp. Date: 10		Completion			<u>6:30</u>		
amplers: grab cuttings fr	om cyclo	ne						Soil Backfill Date: N/	A	Backfill Time		 Est. '	I/A 9/ of	Cal	
Well Completion	Sample Interval Retained Samole Tvoe	Recovery (%)	Blow Count/6"	PID (ppm)	Water Level	Leptn (reet) Granhic I od	USCS Soil Classification	Descrip Hand augered first five feet			Gravel	Coarse Sand	Med. Sand	Fine Sand	
Flush-mounted well box set in						0		18" thick asphalt							ľ
concrete 2" Sch. 80 PVC plank casing from 0'-10' 2" Sch. 80 PVC plank casing from 0'-30'							GP-GM	(GP-GM) Poorly Graded Gi yellowish brown (10YR 3/4 noncemented, nonplastic, o sands and fines, subround gravel, no odor), very dense coarse gravel	e, moist, I, with	60	5	15	10	
2" Sch. 80 PVC blank casing from 0'-50' 2" Sch. 80 PVC blank casing from 0'-70' 0'-6' - cement							SP-SM	(SP-SM) Poorly Graded Sa (7.5YR 4/4), loose to mediu cementation, nonplastic, no	im dense, m		10	20	30	25	
grout 6'-7' - bentonite chip seal 7'- 8' - #60 transition sand 8' - 21' - #3						10	ML	(ML) Silt With Sand, brown noncemented, low plasticity			tr	tr	5	10	
Monterey sand 2" Sch. 80 PVC 0.020" slotted screen (10' to 20' bgs)						15-115-115-115-115-115-115-115-115-115-		(SM) Silty Sand, dark brow dense to dense, moist, no trace gravel, no odor	n (10YR 3/3) ncemented,), medium nonplastic,	5			20	
						-	SW	(SW) Well Graded Sand W yellowish brown (10YR 3/4 noncemented, nonplastic, r), dense to v rounded san	ery dense, d and	30	20	25	20	
PVC end cap —				- -		20-	GP	GP Poorly Graded Gravel (GP) Poorly Graded Gravel (GLEY 2 4/5B 4/1), very de noncemented, nonplastic, (l, dark bluish ense, dry,	gray	90	10			
21'-26' - cement → grout						ት ምም ምም ምም ምም ት ትምት ትምት ትምት ትምት ትምት ትምት	GM GM	(GM) Silty Gravel With Sar (GM) Silty Gravel With Sar (10YR 4/6), dense, slightly nonplastic, subrounded to 1.5", no odor	subangular id, dark yello moist, none	to rounded _/ wish brown cemented,	50	20	5	5	
26'-27' -bentonite						3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	፟፟ ኇጚቚ፟ጚቚጚ								
28' - 41' - #3						30- 30- 30- 30- 30- 30- 30- 30- 30- 30-	- <u>-</u>	(GC) Clayey Gravel With S (10YR 5/6), very dense to o noncemented, fines have n flakes, rounded to subroun gravels, up to 4", no odor	dense, moist nedium plast	, icity, mica	45	10	15	10	
								(SC) Clayey Sand, dark ye 3/4), dense, moist, nonce	llowish brow mented, low	n (10YR to non	+-		40	40	

Log Continued on Next Page

()) MWH						Boring) ID: 5	9-PW-05	Well ID	59-PW-	U5				
orehole Diam. (in.): 14	Tota	al Depti	h (ft):	91.5		Project:	TO-3	5							
orthing (ft): 1967678.49	Eas	ting (ft)	: 676	0422.	06	Job Nun	nber: 19			ne <u>r Mather A</u>					
rill Start Date: 10-19-2009	Star	rt Time	: 14:	30		Logged		Sperber		<u>By: T. Danie</u>		.G.			
rill Finish Date: 10-20-2009	Fini	sh Tim	e: 15:	00		Drilling (Contractor	WDC Exploration Wells	Field Instru	mentation:	PID				_
epth 1st H ₂ O (ft): N/A	Date	e / Tim	e: N/A	L		Drill Rig	Type/Met	hod: ARCH SpeedStar 30	K						
epth H ₂ O After Drilling (ft): N/A	Date	e / Tim	e: N/A			Driller's	Name:	Joe Zimmer			_				
omments: west of hanger	-							Well Comp. Date: 1	0-21-2009	Completion -	Time:	1	6:30		
amplers: grab cuttings from	n cyclor	ıe						Soil Backfill Date:	I/A	Backfill Time	e:	N	/ A		
	lerval /pe		/6"	(md	Level (foot)	Graphic Log	USCS Soil Classification	Desci	iption			Coarse Sand			
	sample In Retained Sample Ty	Recovery (%)	Blow Count/6"	PID (ppm)	Water Level	Graph	USCS Classi				Gravel	Coars	Med. Sand	Fine Sand	
2" Sch. 80 PVC / Will W					- 3	5		plastic, rounded to subrou	unded sands.	mica flakes					+
0.020" slotted screen (30' to 40' bgs)								present, no odor	,						
PVC end cap					4	10- - -									
41'- 46' - cement → grout					4	15-									
6'-47' - bentonite → chip seal 47'-48' - #60 transition sand 48'-61' - #3								cementation increases							
48-61 - #37 - Monterey sand					5	i0	ML	(ML) Sandy Silt, dark yell soft, moist, weak cemen flakes present, no odor	owish brown (ation, low pla:	τυγκ 3/4), sticity, mica			5	20	
2" Sch. 80 PVC					5	i5—		(CL) Sandy Lean Clay, lig		0 (2 5Y 5/4)			10		
PVC end cap					6		<u>J</u>	very stiff, moist, noncem flakes present, no odor	ented, low pla	sticity, mica					
61'- 66' - cement →							ML	(ML) Sandy Silt, strong bi stiff, moist, noncemented	own (7.5YR 4 d, low to no pla	/6), very asticity			10	15	
grout 66'-67' -bentonite → chip seal					6	i5 —									
67'-68' - #60 transition sand															
68'-91.5' - #3]				1		I		


(#) MWH						Boring		59-PW-05	Well ID	: 59-PW- (05				
Borehole Diam. (in.): 14	Tota	Depth (ft)	91.5			Project:	TO-3		1110110				-		
Northing (ft): 1967678.49		ing (ft): 6		2.06		Job Numb			Site: For	mer Mather Al	FB				
Drill Start Date: 10-19-2009	Start	Time: 1	4:30			Logged B	y: M	I. Sperber	Reviewed	By: T. Danie	ls, P	. <u>G</u> .			
Drill Finish Date: 10-20-2009	Finis	h Time: 1	5:00			Drilling Co	ontracto	or: WDC Exploration Wells	Field Instru	umentation: I	PID				
Depth 1st H ₂ O (ft): N/A		/ Time: N						thod: ARCH SpeedStar 30	к						
Depth H ₂ O After Drilling (ft): N/A	A Date	/ Time: N	I/A			Driller's N	ame:	Joe Zimmer							
Comments: west of hanger								Well Comp. Date: 10		Completion			6:30		
Samplers: grab cuttings fro		e						Soil Backfill Date: N	/A	Backfill Time	_		V/A	Cal	
Well Completion	Sample Interval Retained Sample Type	Recovery (%) Blow	PID (ppm)	Water Level	성Depth (feet)	Graphic Log	USCS Soil Classification	Descri	ption		Gravel	Coarse Sand	Med. Sand o	Fine Sand	Silt/Clay
					70			Weak cementation	VR 4/2) stif	f moist				30	70
					75	a de ser de se de se de se de se de ser d La construction de ser de s La ser de ser	ML	(ML) Sandy Silt, brown (10 noncemented, nonplastic,)YR 4/3), stif no odor	f, moist,				30	70
2" Sch. 80 PVC 0.020" slotted screen (70' to 90' bgs)					80 85			mica flakes present							
PVC end cap					90			total depth 91.5' bgs							
					95 100	-									
					105	-						CL	neet	2.06	0

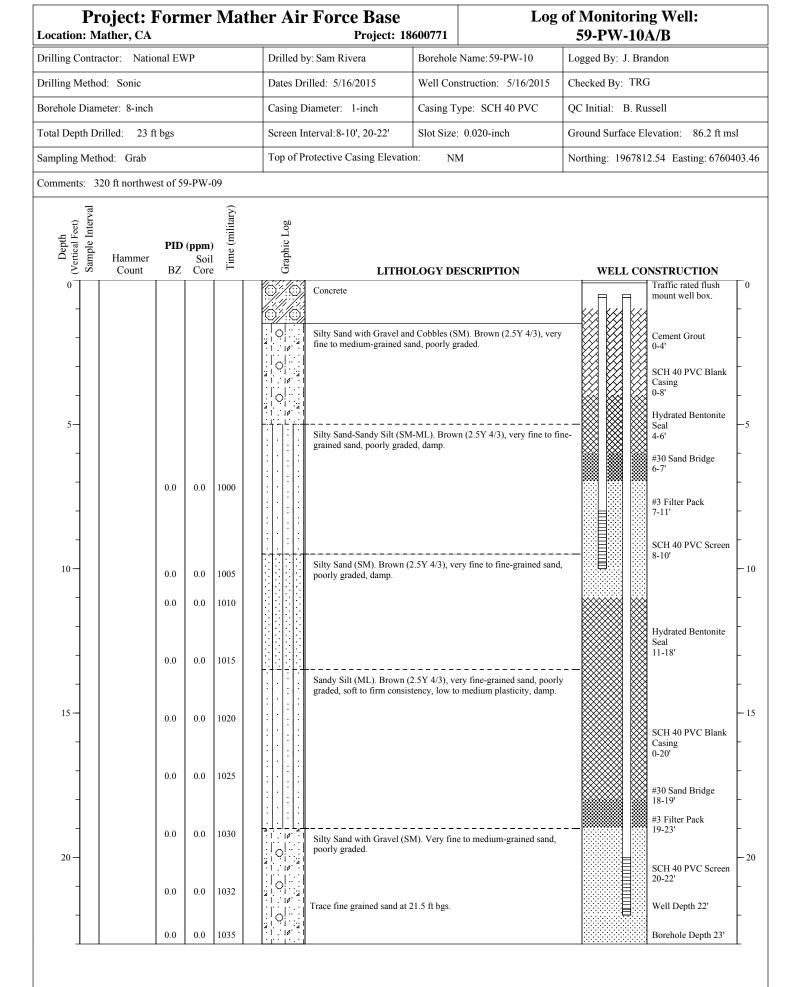
Borehole Diam. (in.): 14		Tota	al Depti	n (ft):	92.0			Project:	TO-35	9-PW-06	Well ID: 59-PW-					_
Northing (ft): 1967523.29			ting (ft)			14			ber: 19		Site: Former Mather A	FB				
Drill Start Date: 10-22-2009			t Time					_ogged E		Sperber	Reviewed By: T. Dani		P.G.	-		_
Drill Finish Date: 10-22-2009			sh Tim													_
Depth 1st H ₂ O (ft): N/A			e / Tim				-			nod: ARCH SpeedStar 30K						_
Depth H ₂ O After Drilling (ft): N/	A		ə / Tim				- 1	. –		Joe Zimmer						_
Comments: south of hange										Well Comp. Date: 10-	26-2009 Completion	Time	: 1	10:20)	_
Samplers: grab cuttings fi		clon	e							Soil Backfill Date: N/A				N/A		
	al								_				Est.	% o f	i So	il
Well Completion	Sample Interval Retained	Sample Type	Recovery (%)	Blow Count/6"	PID (ppm)	Water Level	Depth (feet)	Graphic Log	USCS Soil Classification	Descrip	tion	Gravel	Coarse Sand	Med. Sand	Fine Sand	
Flush-mounted	8	,					- 0-			_ 6" thick asphalt					-	+
well box set in										- 6" thick concrete						+
concrete	B							Î	ML	6" thick aggregate base	/				35	6
blank casing from	8]		(ML) Sandy Silt, brown (7.5)						
0'-10.8'	8				0.0					moist, noncemented, non to mica flakes present	o low plasticity, small					
2" Sch. 80 PVC	ä															
blank casing from	ä						F.									
2" Sch. 80 PVC	8						5-									
blank casing from					0.0			্রার উঠ-রার্ম	GM	(GM) Silty Gravel With Sand	d, dark brown (10YR	50	20	10		
0'-50.75'								SCID		3/3), dense, moist, noncem	nented, nonplastic,					
2" Sch. 80 PVC								2000 - 104 2000 - 10		rounded gravel, rounded to a gravel up to 1.5" diameter	subrounded sand,					
blank casing from	199949						-			graver up to 1.0 ulameter						
0'-6' - cement	11111							<u>ৡ৾</u> ঽ৾৻৸								
grout					0.0		10-	er dag hy Statistics								
6'-7' - bentonite					0.0											
chip seal /									SM	(SM) Silty Sand, dark brown	(10YR 3/3), dense,	1	15	10	55	t
7'- 8' - #60					0.0					moist, noncemented, nonpl	lastic, subrounded	1				
transition sand										sand						
8' - 20.8' - #3	11111						•		GP	(GP) Poorly Graded Gravel	With Sand, olive brown	50	15	20	10	T
Monterey sand	19999							519		(2.5Y 4/3), to greenish gray (GLEY 5/5GY	5/1), dense, moist to					
	111111				0.0		15-			dry, weak cementation, nonp	plastic, subangular to					
2" Sch. 80 PVC	1						-	$\mathcal{E}_{\mathcal{R}}$		subrounded gravel, subroun sand, gravel up to 2.5" diam	ided to subangular eter, meta-sedimentary		1			
screen (10.4' to	1999						-	50 A		gravel, quartz rich sand, son						
20.4' bgs)	121122						-	3635		no odor						
	2222				0.0		-	CF (35								
	1111															
		ĺ					-									
PVC end cap					0.0		20-	235								
								25.00				<u> </u>				
	Ħ	ļ							SP	(SP) Poorly Graded Sand, d (10YR 4/4), loose, moist, we	ark yellowish brown			80	15	
	Ħ						-			nonplastic, small mica flakes	s present, no odor		 i			
20.8'-25.1'	Ħ						-									
cement grout	Ĭ						-	≷ ৡ৾৾ঽ₿≮	GM T	(GM) Silty Gravel With Sand (10YR 3/4), dense to very de	, dark yellowish brown	50	10	10	10	13
	Ĭ							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(10YR 3/4), dense to very de noncemented, nonplastic, gr	ense, moist, ravel up to 2" diameter					
					0.0		25-			subrounded to angular grave	el, subrounded to					ł
25.1'-27.2'							-	and a start of the		subangular sand, meta-sedi	mentary gravel, quartz					
-bentonite chip							-	<u>ক্টু</u> ক্ট্		rich sand with small mica fla	Kes					
seal								ङ्केर्राष्ट्र								
27.2'-28' - #60							-	င်နှိုင် ခြောင်မြ								
							-	a single								
28' - 41' - #3> Monterey sand					0.0		30-		↓			L_				_
Monterey Sand					0.0		30-			(ML) Sandy Silt, dark yellow	ish brown (10YR 4/6),	10			20	17
							-	目出		stiff, moist, noncemented, le odor, minor gravel	ow to nonplastic, no					
					0.0		-									
							-		รพ-ริศ	(SW-SM) Well Graded Sand	With Silt And Gravel,	25	20	20	20	11
							-			dark brown (10YR 3/3), dens noncemented, nonplastic, su	se, moist, ibrounded to angular					
	a					1 1		12 10 11 12		noncemented, nullplastic, st		1		ı		£.


Boended Dam, (n): 14 Total Depth (f): 92.0 Project: Total Sector Project: Total Sector Project: Project: Project: Sector Project: Project	6				
Dolt Sant Date: 10-22:2009 Stort Time: 07:30 Logad Sy: M. Sperter Performance Better By T. Daniels Date: 10-22:2009 Finish Time: 12:34 Delting Contractor: WDC Exploration Wells Piede Instrumentation: PIE Delting Unit III Ro TyperAlectroc: ARCH SpeedSector XMC Exploration Wells Completion View Date / Time: NA Delting TyperAlectroc: ARCH SpeedSector XMC Exploration View OX Delting Unit III Ro TyperAlectroc: ARCH SpeedSector XMC Exploration View OX Delting Unit III Ro TyperAlectroc: ARCH SpeedSector XMC Exploration View OX Delting Unit IIII Ro TyperAlectroc: ARCH SpeedSector XMC Exploration View OX Delting Unit IIII Ro TyperAlectroc: ARCH SpeedSector XMC Exploration View OX Delting Unit IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					
Doil Finab Date: 10-22-2009 Finab Time: 12:24 Drilling Contractor: WDC Exploration Wells Field Instrumentation: PIL Depth 14:10 (ft): NA Date / Time: NA Drilling Contractor: WDC Exploration Wells Field Instrumentation: PIL Depth 14:10 (ft): NA Date / Time: NA Drilling Contractor: WDC Exploration Wells Field Instrumentation: PIL Serphers: grad outfing form cyclone Well Completion Soil Backfill Date: NA Backfill Time: Backfill		PG			
Date / Time: NA Date / Time: NA Definition (1): NA Date / Time: NA Definition (1): NA Date / Time: NA Depth (1): After Definition (1): NA Date / Time: NA Date / Time: NA Definition (1): NA Date / Time: NA Definition (1): NA Date / Time: NA Semplers: grad backfings from cyclone Well Comp. Date: 10-26-2029 Completion Time: NA Backfill Time: Well Completion Image from cyclone Sign (1): Si					
Bagh H, O Alar Drilling (I): NA Date / Time: NA Diller's Name: Joe Zimmet's Well Comp. Date: 19-26-2009 Completion Time: Well Completion grad outling from cyclone Soil Backill Date: NA Backfill Time: Well Completion Image: Soil Backill Date: NA Backfill Time: Soil Backill Date: NA Backfill Time: Well Completion Image: Soil Backill Date: NA Backfill Time: Soil Backill Date: NA Backfill Time: 0.00 Image: Soil Backill Date: NA Backfill Time: Soil Backill Date: NA Backfill Time: 0.00 Image: Soil Backill Date: NA Backfill Time: Soil Backfill Date: NA Backfill Time: 0.00 Image: Soil Backfill Date: NA Backfill Time: Soil Backfill Date: NA Backfill Time: 0.00 Image: Soil Backfill Date: NA Backfill Time: Soil Backfill Date: NA Backfill Time: 0.00 Image: Soil Backfill Date: NA Backfill Time: Soil Backfill Date: NA Backfill Time: 0.00 Image: Soil Backfill Date: NA Backfill Time: Soil Backfill Date: Na Backfill Time: 141: 46' - cement + Image: Soil Backfill Date: Na Image: Soil Backfill Date: Na Mimage: Soil Backfill Date: Na	<i>.</i>				
Commentation Well Comp Date: 19-28-2009 Competition Serpiers: grad outlings from cyclone Sol Backfill Date: NA Backfill Time: Well Completion Image: Sol Backfill Date: NA Backfill Time: Well Completion Image: Sol Backfill Date: NA Backfill Time: 27: Sch. 80 PVC Image: Sol Backfill Date: NA Backfill Time: 0.020? Image: Sol Backfill Date: NA Backfill Time: 27: Sch. 80 PVC Image: Sol Backfill Date: NA Backfill Time: 0.00 Image: Sol Backfill Date: NA Backfill Time: 27: Sch. 80 PVC Image: Sol Backfill Date: Image: Sol					
Semplers: Tards cuttings from cyclore Soil Backfill Date: NA Backfill Time: Well Completion Total and the second s			10:2	20	
Weil Completion Image of the subscription Image of the subscription Image of the subscription 2" Sch. 80 PVC Image of the subscription Image of the subscription Image of the subscription Image of the subscription 41' 46' - cament + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 41' 46' - cament + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 41' 46' - cament + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 41' 46' - cament + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 46' 47' - benchaller + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 46' 47' - benchaller + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 46' 47' - benchaller + Image of the subscription Image of the subscription Image of the subscription Image of the subscription 2" Sch. 80 PVC - Image of the subscription Image of the subscription			N/A		~
2" Sch. 80 PVC 0.020 sktict screen (31 to 41' bgs) PVC end cap 41'- 46' - cement		Est.			Soil
2" Sch. 80 PVC 0.020" slotted screen (31' to 11' bgs) 0.0 41'- 46' - cement 41'- 46' - cement 46'-47' - bentonite 46'-47' - bentonite 46'-47' - bentonite 46'-47' - bentonite 46'-47' - bentonite C.0 0.0 50- ML (ML) Sandy Silt, vellowish brown (10YR 5/4), medium plasticity, trace mica, trace mafic, no odor ML (ML) Sandy Silt, becomes brown (7.5YR 4/4), slight increase sand content brown (7.5YR 4/4), slight increase sand content 61'- 66' - cement grout		Sand	_		Fine Sand
41'- 46' - cement → grout 6'-47' - bentonite → chip seal 47'-48' + #60 transition sand 48'-60.75' + #30 Mut 2' Sch. 80 PVC - 0.00 50- 0.00 50- Mut ML (ML) Sandy Silt, yellowish brown (10YR 5/4), medium stift, most, medium plasticity, trace mica, trace malic, no odor Mut (ML) Sandy Silt, becomes brown (7.5YR 4/4), slight increase sand content 0.00 55- 60.75' to 60.75' t					
grout 6'-47' - bentonite→ chip seal 47-48' #60 transition sand 48-60.75' - #3→ Monterey sand 2'' Sch. 80 PVC 0.020' slotted screen (50.75' bgs) PVC end cap→ 61'- 66' - cement→ grout					
In the seal of the			10	0 1	15
48°-60.75′ + #3 → Monterey sand 2" Sch. 80 PVC - 0.020° slotted screen (50.75′ bgs) PVC end cap- 61′- 66′ - cement → grout	·				
2" Sch. 80 PVC- 0.020" slotted screen (50.75' to 60.75' bgs) PVC end cap 61'- 66' - cement grout					
PVC end cap			15	5 2	20
grout					
66'-67' -bentonite —					
chip seal 67'-68' - #60 transition sand 68'-92' - #3			30	0 1	5

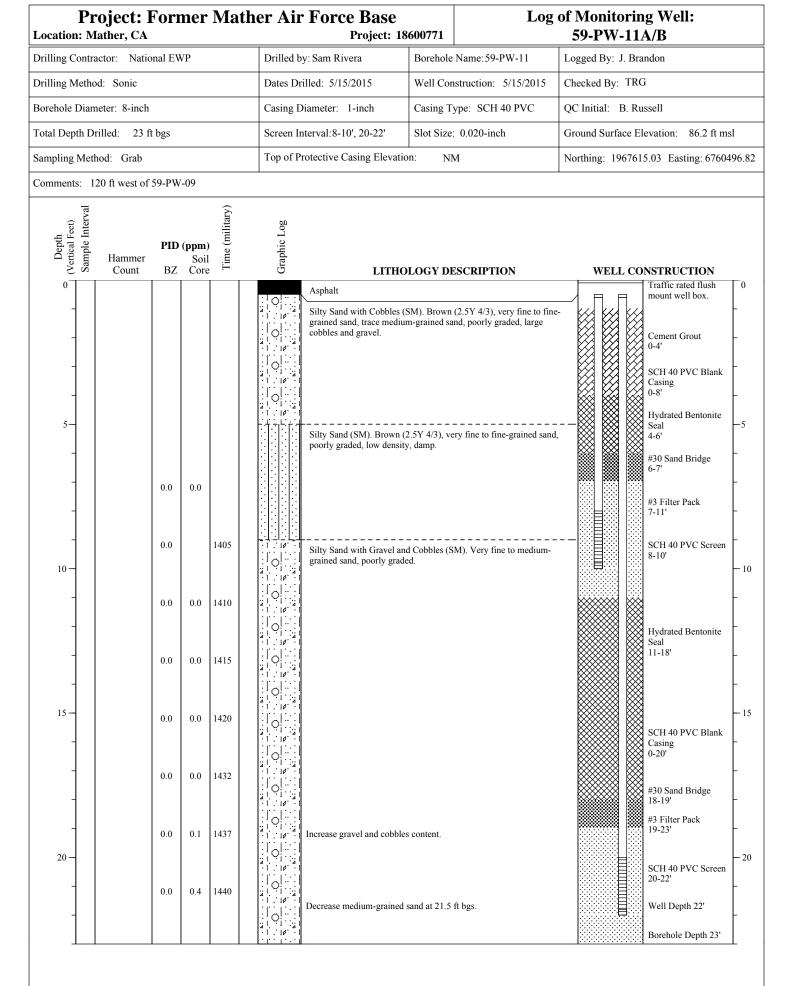
() М	WH								Boring	a ID: 5	9-PW-06	Well ID	: 59-PW- (
Borehole Diar	m. (in.); 14		Tota	al Dept	h (ft):	92.0			Project:							_		
Northing (ft):	1967523	3.29): 676		.14			nber: 19		Site: For	ner Mather Al	B				
Drill Start Date	e: 10-22-20	009	Star	t Time	: 07:	30			Logged I	By: M	. Sperber	Reviewed	By: T. Danie	ls, P	.G.			
Drill Finish Da	ate: 10-22-20		Fini	sh Tim	e: 12:	34			Drilling (Contractor	: WDC Exploration Wells	Field Instru	umentation:	PID				
Depth 1st H ₂ C	(I/A	Date	e / Tim	e: N/A	1		1	Drill Rig	Type/Met	hod: ARCH SpeedStar 30	K						
Depth H ₂ O Aft	ter Drilling (ft):		Date	∍/Tim	e: N/A	<u>ا</u>			Driller's	Name:	Joe Zimmer							
Comments:	south of ha										Well Comp. Date: 1		Completion			0:20)	
Samplers:	grab cutting		cyclon	ie	(ТТ				Soil Backfill Date: N	I/A	Backfill Time			N/A		:1
Well C	completion	Sample Interval	Retained Sample Type	Recovery (%)	Blow Count/6"	PID (ppm)	Water Level	Depth (feet)	Graphic Log	USCS Soil Classification	Descr	iption		Gravel	Coarse Sand	Med. Sand	Fine Sand	
						0.0		75-		SM	(SM) Silty Sand, brown (7 noncemented, nonplastic,	.5YR 5/3), loc trace mica	ise, moist,			50	15	35
2" Sch. 80 0.020" sl screen (70' t	otted							80-		SM (SM) Silty Sand, becomes dark yellowish brown (10YR 4/4), trace mafic								
PVC enc	l cap —							85- 90-		ML	(ML) Sandy Silt, brown (7 moist, noncemented, low trace mica, trace mafic, tra	to moderate	olasticity,			10	25	65
									-									
total denth 00	ban _ >																	
total depth 92	bys 🖛										total depth 92' bgs					T		
									1									
									-									
			Í					95-	4									
								•]						ĺ			
									1	ĺ							Í	
								-	-									
									.									
								100										
								100-	1									
									4									
								-]									
			f					-	1	ĺ								
								105-							Sh			

Sheet 3 of 3

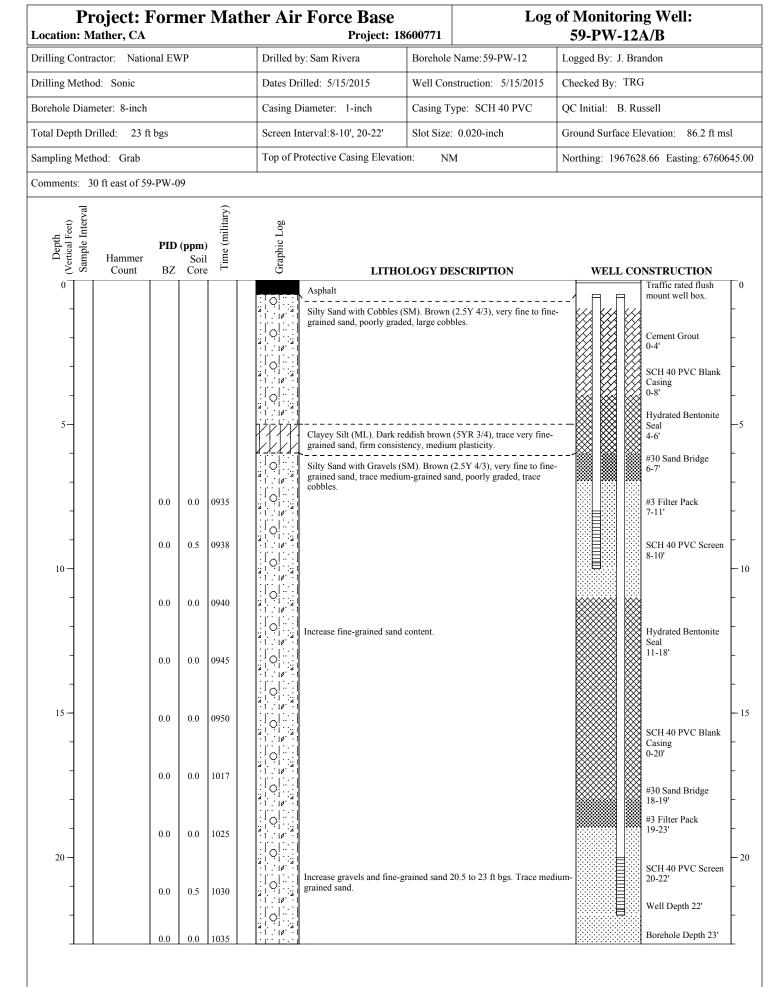
916-679-2000

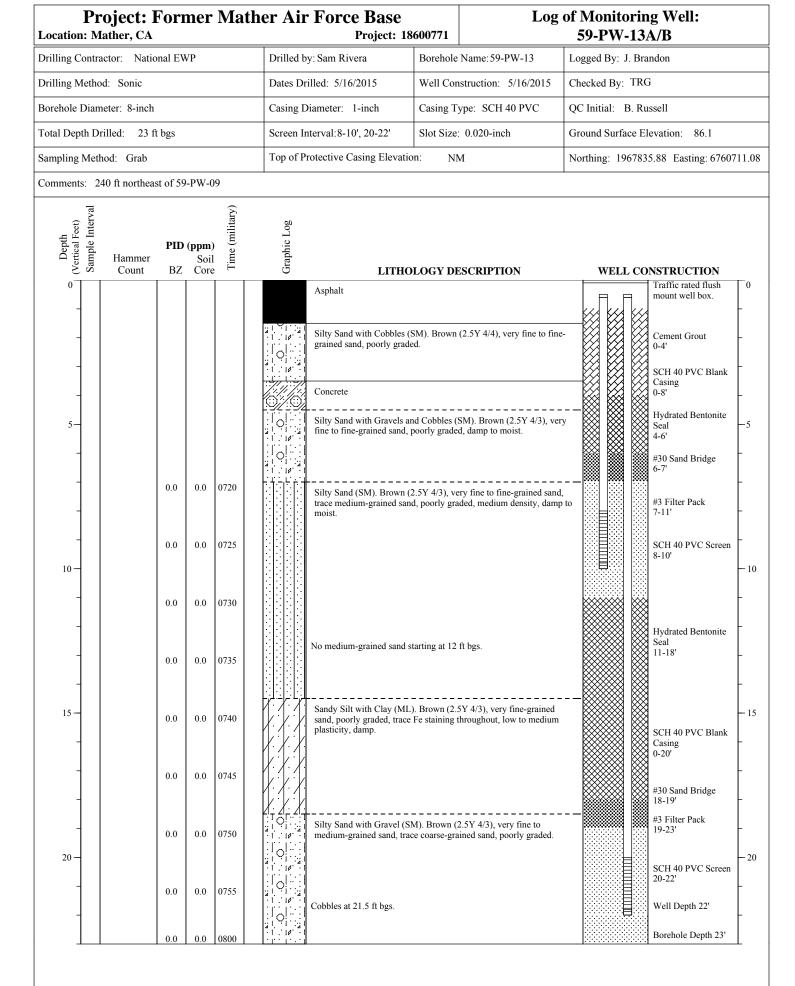


Project: Former Mat	her Air Force Base		Log	of Monitoring Well:
Location: Mather, CA	Project: 18	8600771		59-PW-09A/B
Drilling Contractor: Cascade Drilling	Drilled by: Steve Vibbard	Borehole	Name: 59-PW-09	Logged By: J. Brandon
Drilling Method: ARCH	Dates Drilled: 10/24/2014	Well Con	struction: 10/24-10/27	Checked By: TRG
Borehole Diameter: 8-Inch	Casing Diameter: 1-inch	Casing Ty	ype: SCH 40 PVC	QC Initial: PMB
Total Depth Drilled: 22'	Screen Interval: 10'-11', 20'-21'	Slot Size:	0.020-inch	Ground Surface Elevation: 85.8 ft msl
Sampling Method: Grab	Top of Protective Casing Elevation	on: NN	Л	Northing: 1967625.56 Easting: 6760598.79
Commente:	•			-


Comments:

Depth (Vertical Feet) Sample Interval	Hammer		(ppm) Soil	Щ.	Graphic Log				
$\sim \frac{5}{2}$	Count	BZ	Core		Ð	LITHOLOGY DESCRIPTION	WELL CO	DNSTRUCTION Traffic rated flush	Τo
Ŭ						Asphalt to 7 inches		mount well box.	Ŭ
						Silty Sand w/ Cobbles (SM). Dark brown (10YR 3/3), very fine- to coarse-grained sand, poorly graded, loose to medium density, damp.		Cement Grout	_
-		0.0	0.0	0952		Hand Auger to 5'		0-7.4'	-
		0.0	0.0	1120		Sandy Silt (ML). Strong brown (2.5Y 5/6), very fine-grained sand, soft to firm consistency, slow dilatancy, low plasticity, dry.			-
5—		0.0	0.0	1120		At 5.5 ft bgs color change to yellowish brown (10YR 5/6).		SCH 40 PVC Blank Casing 0-10'	-5
		0.0	0.0	1324					-
-								Bentonite Seal 7.4-8.5'	-
-								#30 Sand Bridge 8.5-9.5' : #3 Filter Pack	-
10 —		0.0 0.0	0.0 0.0	1330 1335		Silty Sand w/ Gravel (GM). Light olive brown (2.5Y 5/3), very fine to fine-grained sand, poorly graded, subangular and rounded gravels,		9.5-11.5' SCH 40 PVC Screen 10-11'	- 10
-						medium density, moist.		Cement Grout 11.5-17.5'	-
- 15 -		0.0	0.0	1341		Sand (SP). Light olive brown (2.5Y 5/3), very fine- to medium- grained sand, trace coarse-grained sand, poorly graded, loose density, moist.		SCH 40 PVC Blank Casing 0-20'	- 15
-		0.0	0.1	1405		Gravels at 17 ft.			-
		0.0	0.1	1403		Silty Sandy Gravel (GM). Light olive brown (2.5Y 5/3), very fine- to		Bentonite Seal 17.5-18.5' #30 Sand Bridge 18.5-19.5'	-
20 —		0.0	0.1			medium-grained sand, poorly graded, loose density, damp.		#3 Filter Pack 19.5-22' SCH 40 PVC Screen 20-21'	- 20
		0.0	0.1	1420				Well Depth 21' Borehole Depth 22'	





APPENDIX B

Field Logs (Provided on CD)

Table B-1. Stabilization Parameters for New Soil Vapor Wells Table B-2. Water Levels in Soil Vapor Wells (March 2017 – February 2018) Table B-3. Indoor Air and Sub-Slab Vapor Sampling Weather Parameters (January 26 and 27, 2017)

Indoor Air Sampling Event Field Logs Baseline Soil Vapor Monitoring Event Field Logs Waste Disposal Receipts

		Top of			Water	Purge					
Well	Depth	Screen			Level	time	Methane	02	CO2	PID	
ID	(ft bgs)	(ft bgs)	Date	Time	(ft bgs)	(sec)	(% LEL)	(%)	(ppmv)	(ppmv)	Notes:
59-PW-12	8 to 10	8	2/8/2017		N/A	12					vacuum during purge
59-PW-12	8 to 10	8	2/15/2017	10:47	N/A	12	0	17.6	25,400	0	low vacuum in well
59-PW-12	8 to 10	8	3/16/2017	8:43	N/A	12					Created vacuum when purged
59-PW-12	8 to 10	8	4/6/2017	12:51	N/A	12					Created vacuum
59-PW-12	8 to 10	8	5/16/2017	10:26	N/A	12					created vacuum
59-PW-12	20 to 22	20	2/8/2017		N/A	26.4	0	16.6	10,260	83.4	
59-PW-12	20 to 22	20	2/15/2017	10:50	N/A	26.4	0	18.4	13,100	130	
59-PW-12	20 to 22	20	3/16/2017	8:46	N/A	26.4	0	20.9	15,000	1.30	vacuum noted - data may not be good.
59-PW-12	20 to 22	20	4/6/2017	12:53	N/A	26.4	0	16.6	14,800	70	
59-PW-12	20 to 22	20	5/16/2017								adequate data; no further testing
59-PW-14	30 to 32	30	2/8/2017	9:16	N/A	38.4					vacuum during purge
59-PW-14	30 to 32	30	2/15/2017	10:31	24.68	38.4					saturated screen
59-PW-14	30 to 32	30	3/16/2017	8:53	25.22						Submerged
59-PW-14	30 to 32	30	4/6/2017	13:00	23.67						Water saturated screen
59-PW-14	30 to 32	30	5/16/2017								Water saturated screen
59-PW-14	60 to 62	60	2/8/2017	9:30	N/A	74.4					vacuum during purge
59-PW-14	60 to 62	60	2/15/2017	10:35	55.00	74.4					saturated screen
59-PW-14	60 to 62	60	3/16/2017	8:55	56.19						Submerged
59-PW-14	60 to 62	60	4/6/2017	13:03	56.53						Water saturated screen
59-PW-14	60 to 62	60	5/16/2017								Water saturated screen
59-PW-14	80 to 82	80	2/8/2017	9:35	N/A	98.4	0	20	20,760	0	
59-PW-14	80 to 82	80	2/15/2017	10:39	N/A	98.4	0	20.3	40,600	1.2	
59-PW-14	80 to 82	80	3/16/2017	8:58	N/A	98.4	0	20.3	28,200	1.0	
59-PW-14	80 to 82	80	4/6/2017	13:07	N/A	98.4	0	19.8	43,700	6.5	
59-PW-14	80 to 82	80	5/16/2017								adequate data; no further testing
59-PW-15	9 to 11	9	2/8/2017		N/A	12					vacuum during purge
59-PW-15	9 to 11	9	2/15/2017	10:05	8.64	12	0	19.9	850	0.5	low vacuum; screen partially submerged
59-PW-15	9 to 11	9	3/16/2017	9:08	7.5						Submerged
59-PW-15	9 to 11	9	4/6/2017	14:05	7.39						Water, pumped 3 gal gw, slow recharge
59-PW-15	9 to 11	9	5/16/2017								Submerged

		Top of			Water	Purge					
Well	Depth	Screen			Level	time	Methane	02	CO2	PID	
ID	(ft bgs)	(ft bgs)	Date	Time	(ft bgs)	(sec)	(% LEL)	(%)	(ppmv)	(ppmv)	Notes:
59-PW-15	20 to 22	20	2/8/2017		N/A						vacuum during purge
59-PW-15	20 to 22	20	2/15/2017	10:11	N/A	26.4	0	17.3	20,800	1.2	
59-PW-15	20 to 22	20	3/16/2017	9:14	N/A	26.4	0	16.9	13,700	0.30	
59-PW-15	20 to 22	20	4/6/2017	13:38	N/A	26.4	0	16.2	22,100	3.7	
59-PW-15	20 to 22	20	5/16/2017								adequate data - stop testing
59-PW-15	30 to 32	30	2/8/2017	9:45	N/A	38.4	0	15.9	10,640	0	
59-PW-15	30 to 32	30	2/15/2017	10:14	N/A	38.4	0	17.4	22,800	1.2	
59-PW-15	30 to 32	30	3/16/2017	9:18	N/A	38.4	0	20.9	1,300	0.0	
59-PW-15	30 to 32	30	4/6/2017	13:41	N/A	38.4	0	16.2	26,300	3	
59-PW-15	30 to 32	30	5/16/2017								adequate data - stop testing
59-PW-15	60 to 62	60	2/8/2017	9:56	N/A	74.4	0	19.3	10,680	0	
59-PW-15	60 to 62	60	2/15/2017	10:20	N/A	74.4	0	19.1	16,600	3.1	
59-PW-15	60 to 62	60	3/16/2017	9:23	N/A	74.4	0	19.6	11,900	1.8	
59-PW-15	60 to 62	60	4/6/2017	13:45	N/A	74.4	0	18.8	26,300	4.6	
59-PW-15	60 to 62	60	5/16/2017								adequate data - stop testing
59-PW-15	80 to 82	80	2/8/2017	10:07	N/A	98.4	0	19.9	10,840	0	
59-PW-15	80 to 82	80	2/15/2017	10:23	N/A	98.4	0	20.1	28,800	1.7	
59-PW-15	80 to 82	80	3/16/2017	10:02	N/A	98.4	0	20.4	7,800	0.10	
59-PW-15	80 to 82	80	4/6/2017	13:52	N/A	98.4	0	19.7	33,900	3.2	
59-PW-15	80 to 82	80	5/16/2017								adequate data - stop testing
59-PW-16	8 to 10	8	2/8/2017		N/A	13.2					vacuum during purge
59-PW-16	8 to 10	8	2/15/2017	9:33	3.78	13.2					water in well
59-PW-16	8 to 10	8	3/16/2017		4.26						Submerged
59-PW-16	8 to 10	8	4/6/2017	11:12	4.22						Water saturated screen
59-PW-16	8 to 10	8	5/16/2017								Submerged
59-PW-16	20 to 22	20	2/8/2017		N/A						water in well
59-PW-16	20 to 22	20	2/15/2017	9:39	N/A	26.4	0	17.1	14,100	0.8	
59-PW-16	20 to 22	20	3/16/2017	10:48	N/A	26.4	0	16.7	12,700	0.4	
59-PW-16	20 to 22	20	4/6/2017	11:14	N/A	26.4	0	15.4	21,500	0.7	
59-PW-16	20 to 22	20	5/16/2017								adequate data - stop testing

		Top of			Water	Purge					
Well	Depth	Screen			Level	time	Methane	02	CO2	PID	
ID	(ft bgs)	(ft bgs)	Date	Time	(ft bgs)	(sec)	(% LEL)	(%)	(ppmv)	(ppmv)	Notes:
59-PW-16	30 to 32	30	2/8/2017	10:32	N/A	38.4	0	14.7	10,170	0.1	
59-PW-16	30 to 32	30	2/15/2017	9:42	N/A	38.4	0	16.7	25,400	1.8	
59-PW-16	30 to 32	30	3/16/2017	10:51	N/A	38.4	0	15.0	19,100	0.7	
59-PW-16	30 to 32	30	4/6/2017	11:36	N/A	38.4	0	14.9	28,600	1.3	
59-PW-16	30 to 32	30	5/16/2017								adequate data - stop testing
59-PW-16	60 to 62	60	2/8/2017		N/A	74.4					vacuum during purge
59-PW-16	60 to 62	60	2/15/2017	9:56	N/A	74.4	0	15.5	2,400	6.0	
59-PW-16	60 to 62	60	3/16/2017	11:06	N/A						Created vacuum when purged
59-PW-16	60 to 62	60	4/6/2017	11:41	N/A						Created vacuum
59-PW-16	60 to 62	60	5/16/2017								did not sample
59-PW-16	80 to 82	80	2/8/2017	10:55	N/A	98.4	0	20.6	5,870	0	
59-PW-16	80 to 82	80	2/15/2017	10:00	N/A	98.4	0	19.9	28,100	0.6	
59-PW-16	80 to 82	80	3/16/2017	11:01	N/A	98.4	0	20.9	10,800	0.0	
59-PW-16	80 to 82	80	4/6/2017	11:44	N/A	98.4	0	19.4	40,000	0.8	
59-PW-16	80 to 82	80	5/16/2017								adequate data - stop testing
59-PW-17	8 to 10	8	2/8/2017		N/A	12					water in well
59-PW-17	8 to 10	8	2/15/2017	8:52	3.80	12					water in well/pump line
59-PW-17	8 to 10	8	3/16/2017	~	4.72						Submerged
59-PW-17	8 to 10	8	4/6/2017	10:43	4.7						Water saturated screen
59-PW-17	8 to 10	8	5/16/2017								Water saturated screen
59-PW-17	20 to 22	20	2/8/2017	8:03	N/A	26.4	3	16.6	9,150	11.8	
59-PW-17	20 to 22	20	2/15/2017	8:59	N/A	26.4	0	18.4	8,810	16.7	
59-PW-17	20 to 22	20	3/16/2017	10:23	N/A	26.4	0	17.1	4,700	2.9	
59-PW-17	20 to 22	20	4/6/2017	10:51	N/A	26.4	0	16.3	6,280	3.0	
59-PW-17	20 to 22	20	5/16/2017								adequate data - stop testing
59-PW-17	30 to 32	30	2/8/2017	8:17	N/A	38.4	0	12.6	5,060	0.8	
59-PW-17	30 to 32	30	2/15/2017	9:03	N/A	38.4	0	16	4,400	3.7	
59-PW-17	30 to 32	30	3/16/2017	10:27	N/A	38.4	0	12.9	12,300	1.9	
59-PW-17	30 to 32	30	4/6/2017	10:55	N/A	38.4					Created vacuum
59-PW-17	30 to 32	30	5/16/2017								not sampled; adequate data available.

		Top of			Water	Purge					
Well	Depth	Screen			Level	time	Methane	02	CO2	PID	
ID	(ft bgs)	(ft bgs)	Date	Time	(ft bgs)	(sec)	(% LEL)	(%)	(ppmv)	(ppmv)	Notes:
59-PW-17	60 to 62	60	2/8/2017	8:39	N/A	74.4	0	15.1	20,550	2.2	
59-PW-17	60 to 62	60	2/15/2017	9:08	N/A	74.4	0	16.7	46,000	2.6	
59-PW-17	60 to 62	60	3/16/2017	~	60.45						Submerged
59-PW-17	60 to 62	60	4/6/2017	10:45	60.16						Water saturated screen
59-PW-17	60 to 62	60	5/16/2017								Water saturated screen
59-PW-17	80 to 82	80	2/8/2017	8:52	N/A	98.4	0	19.3	30,110	0	
59-PW-17	80 to 82	80	2/15/2017	9:15	N/A	98.4	1	20.2	41,300	0.7	
59-PW-17	80 to 82	80	3/16/2017	10:33	N/A	98.4	0	20.5	14,500	0.3	
59-PW-17	80 to 82	80	4/6/2017	11:00	N/A	98.4	0	19.7	48,100	0.7	
59-PW-17	80 to 82	80	5/16/2017								adequate data - stop testing

% LEL = percent lower explosive limit

CO2 = carbon dioxide

ft bgs = feet below ground surface

N/A = not applicable

O2 = oxygen

PID = photoionization detector ppmv = parts per million by volume

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
3/1/2017	59-PW-05	10-20	1	20	19.20	0.109	0.82	19.02	0.18	0.007	0	
3/16/2017	59-PW-05	10-20	2	20	19.20	0.436	3.26	19.02	0.18	0.029	0	
4/6/2017	59-PW-05	10-20	2	20	19.20	0.436	3.26	19.02	0.18	0.029	0	
5/16/2017	59-PW-05	10-20	2	20	19.20	0.436	3.26	19.02	0.18	0.029	0	
9/21/2017	59-PW-05	10-20	2	20	19.21	0.436	3.26	19.03	0.18	0.029	0	
11/7/2017	59-PW-05	10-20	2	20	19.21	0.436	3.26	19.03	0.18	0.029	0	
3/1/2017	59-PW-05	30-40	2	40	NM	0.873	6.53	dry	0	0	0	
5/16/2017	59-PW-05	30-40	2	40	NM	0.873	6.53	dry	0	0	0	
9/21/2017	59-PW-05	30-40	2	40	39.24	0.873	6.53	dry	0	0	0	
11/7/2017	59-PW-05	30-40	2	40	39.24	0.873	6.53	dry	0	0	0	
3/1/2017	59-PW-05	50-60	1	60	59.25	0.327	2.45	59.07	0.18	0.007	0	
3/16/2017	59-PW-05	50-60	2	60	59.25	1.309	9.79	59.07	0.18	0.029	0	
4/6/2017	59-PW-05	50-60	2	60	59.25	1.309	9.79	59.07	0.18	0.029	0	
5/16/2017	59-PW-05	50-60	2	60	59.25	1.309	9.79	59.08	0.17	0.028	0	
9/21/2017	59-PW-05	50-60	2	60	59.24	1.309	9.79	59.08	0.16	0.026	0	
11/7/2017	59-PW-05	50-60	2	60	59.24	1.309	9.79	59.10	0.14	0.023	0	
3/1/2017	59-PW-05	70-90	2	90	NM	1.963	14.7	dry	0	0	0	
5/16/2017	59-PW-05	70-90	2	90	NM	1.963	14.7	dry	0	0	0	
9/21/2017	59-PW-05	70-90	2	90	89.20	1.963	14.7	dry	0	0	0	
11/7/2017	59-PW-05	70-90	2	90	89.20	1.963	14.7	dry	0	0	0	
3/1/2017	59-PW-06	11-21	2	21	NM	0.458	3.43	dry	0	0	0	
5/16/2017	59-PW-06	11-21	2	21	NM	0.458	3.43	dry	0	0	0	
9/21/2017	59-PW-06	11-21	2	21	19.15	0.458	3.43	18.74	0.41	0	0	
11/7/2017	59-PW-06	11-21	2	21	19.15	0.458	3.43	18.75	0.4	0	0	

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
Date		(ICCL DG3)	(111.)	(11)	(11.093)	(01)	(gui)	(11 093)		(gui)	(gui)	Notes
3/1/2017	59-PW-06	31-41	1	41	39.10	0.224	1.67	38.81	0.29	0.012	0	
3/16/2017	59-PW-06	31-41	2	41	39.10	0.894	6.69	38.82	0.28	0.046	0	
4/6/2017	59-PW-06	31-41	2	41	39.10	0.894	6.69	38.83	0.27	0.044	0	
5/16/2017	59-PW-06	31-41	2	41	39.10	0.894	6.69	38.84	0.26	0.042	0	
9/21/2017	59-PW-06	31-41	2	41	39.11	0.894	6.69	38.88	0.23	0.038	0	
11/7/2017	59-PW-06	31-41	2	41	39.11	0.894	6.69	38.90	0.21	0.034	0	
3/1/2017	59-PW-06	51-61	1	61	59.13	0.333	2.49	58.82	0.31	0.013	0	
3/16/2017	59-PW-06	51-61	2	61	59.13	1.331	9.96	58.81	0.32	0.052	0	
4/6/2017	59-PW-06	51-61	2	61	59.13	1.331	9.96	58.82	0.31	0.051	0	
5/16/2017	59-PW-06	51-61	2	61	59.13	1.331	9.96	58.82	0.31	0.051	0	
9/21/2017	59-PW-06	51-61	2	61	59.17	1.331	9.96	58.83	0.34	0.055	0	
11/7/2017	59-PW-06	51-61	2	61	59.17	1.331	9.96	58.85	0.32	0.052	0	
3/1/2017	59-PW-06	70-90	1	90	89.20	0.491	3.67	88.88	0.32	0.013	0	
3/16/2017	59-PW-06	70-90	2	90	89.20	1.963	14.69	88.86	0.34	0.055	0	
4/6/2017	59-PW-06	70-90	2	90	89.20	1.963	14.69	88.88	0.32	0.052	0	
5/16/2017	59-PW-06	70-90	2	90	89.20	1.963	14.69	88.89	0.31	0.051	0	
9/21/2017	59-PW-06	70-90	2	90	89.25	1.963	14.69	88.88	0.37	0.060	0	
11/7/2017	59-PW-06	70-90	2	90	89.25	1.963	14.69	88.92	0.33	0.054	0	
3/1/2017	59-PW-07	10-20	2	20	NM	0.436	3.26	dry	0	0	0	
5/16/2017	59-PW-07	10-20	2	20	NM	0.436	3.26	dry	0	0	0	
9/21/2017	59-PW-07	10-20	2	20	19.89	0.436	3.26	dry	0	0	0	
11/7/2017	59-PW-07	10-20	2	20	19.89	0.436	3.26	19.90	0	0	0	
3/1/2017	59-PW-08	10-20	1	20	19.56	0.109	0.82	19.51	0.05	0.002	0	

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
3/16/2017	59-PW-08	10-20	2	20	19.56	0.436	3.26	19.5	0.06	0.010	0	
4/6/2017	59-PW-08	10-20	2	20	19.56	0.436	3.26	19.51	0.05	0.008	0	
5/16/2017	59-PW-08	10-20	2	20	19.56	0.436	3.26	19.51	0.05	0.008	0	
9/21/2017	59-PW-08	10-20	2	20	19.77	0.436	3.26	19.50	0.27	0.044	0	
11/7/2017	59-PW-08	10-20	2	20	19.77	0.436	3.26	19.53	0.24	0.039	0	
3/1/2017	59-PW-09A	10-11	1	11	NM	0.060	0.45	dry	0	0	0	
5/16/2017	59-PW-09A	10-11	1	11	NM	0.060	0.45	dry	0	0	0	
9/21/2017	59-PW-09A	10-11	1	11	10.76	0.060	0.45	dry	0	0	0	
11/7/2017	59-PW-09A	10-11	1	11	10.76	0.060	0.45	dry	0	0	0	
3/1/2017	59-PW-09B	20-21	1	21	NM	0.115	0.86	dry	0	0	0	
5/16/2017	59-PW-09B	20-21	1	21	NM	0.115	0.86	dry	0	0	0	
9/21/2017	59-PW-09B	20-21	1	21	20.76	0.115	0.86	dry	0	0	0	
111/7/2017	59-PW-09B	20-21	1	21	20.76	0.115	0.86	dry	0	0	0	
3/1/2017	59-PW-10A	8-10	1	10	9.70	0.055	0.41	9.65	0.05	0.002	0	
4/6/2017	59-PW-10A	8-10	1	10	9.70	0.055	0.41	dry	0	0	0	
5/16/2017	59-PW-10A	8-10	1	10	9.70	0.055	0.41	dry	0	0	0	
9/21/2017	59-PW-10A	8-10	1	10	9.64	0.055	0.41	dry	0	0	0	
11/7/2017	59-PW-10A	8-10	1	10	9.64	0.055	0.41	dry	0	0	0	
3/1/2017	59-PW-10B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-10B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-10B	20-22	1	22	21.70	0.120	0.90	dry	0	0	0	
11/7/2017	59-PW-10B	20-22	1	22	21.70	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-11A	8-10	1	10	NM	0.055	0.41	dry	0	0	0	<u> </u>

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
5/16/2017	59-PW-11A	8-10	1	10	NM	0.055	0.41	dry	0	0	0	
9/21/2017	59-PW-11A	8-10	1	10	9.88	0.055	0.41	dry	0	0	0	
11/8/2017	59-PW-11A	8-10	1	10	9.88	0.055	0.41	dry	0	0	0	
3/1/2017	59-PW-11B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-11B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-11B	20-22	1	22	21.68	0.120	0.90	dry	0	0	0	
11/8/2017	59-PW-11B	20-22	1	22	21.68	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-12A	8-10	1	10	NM	0.055	0.41	dry	0	0	0	
5/16/2017	59-PW-12A	8-10	1	10	NM	0.055	0.41	dry	0	0	0	
9/21/2017	59-PW-12A	8-10	1	10	9.92	0.055	0.41	dry	0	0	0	
11/7/2017	59-PW-12A	8-10	1	10	9.92	0.055	0.41	dry	0	0	0	
3/1/2017	59-PW-12B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-12B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-12B	20-22	1	22	21.95	0.120	0.90	dry	0	0	0	
11/7/2017	59-PW-12B	20-22	1	22	21.95	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	5.41	4.29	0.175	0.25	bailed > slow recharge
3/16/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	6.33	3.37	0.138	0	
4/6/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	5.82	3.88	0.158	0	
5/16/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	5.98	3.72	0.152	0	
6/15/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	6.32	3.38	0.138	0	
7/11/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	6.68	3.02	0.123	0	08:25 - before purging -
7/11/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	8.3	1.40	0.057	0.75	08:43 - after purging
7/11/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	8.3	1.40	0.057	0	12:43 - after rebound
8/10/2017	59-PW-13A	8-10	1	10	9.70	0.055	0.41	7.3	2.40	0.098	0	

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
9/21/2017	59-PW-13A	8-10	1	10	9.72	0.055	0.41	7.42	2.30	0.094	0	
11/2/2017	59-PW-13A	8-10	1	10	9.72	0.055	0.41	9.10	0.62	0.025	0	
2/21/2018	59-PW-13A	8-10	1	10	9.71	0.055	0.41	5.83	3.88	0.158	0	Screen saturated
3/1/2017	59-PW-13B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-13B	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-13B	20-22	1	22	21.69	0.120	0.90	dry	0	0	0	
11/2/2017	59-PW-13B	20-22	1	22	21.69	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	24.13	7.70	0.314	1.6	Bailed > slow recharge
3/16/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	25.22	6.61	0.270	0	
4/6/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	23.67	8.16	0.333	0	
5/16/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	23.77	8.06	0.329	0	
6/15/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	24.79	7.04	0.287	0	
7/11/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	25.73	6.10	0.249	0	11:38 - before purging
7/11/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	30.38	1.45	0.059	1.15	12:25 - after purging
7/11/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	30.38	1.45	0.059	0	12:30 - after rebound
8/10/2017	59-PW-14	30-32	1	32	31.83	0.175	1.31	26.66	5.17	0.211	0	
9/21/2017	59-PW-14	30-32	1	32	31.77	0.175	1.31	26.84	4.93	0.201	0	
11/1/2017	59-PW-14	30-32	1	32	31.77	0.175	1.31	30.36	1.41	0.058	0	
2/21/2018	59-PW-14	30-32	1	32	31.74	0.175	1.31	27.32	4.42	0.180	0	Screen saturated
3/1/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	55.49	6.12	0.250	0	
3/16/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	56.19	5.42	0.221	0	
4/6/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	56.53	5.08	0.207	0	
5/16/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	57.07	4.54	0.185	0	
6/15/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	56.99	4.62	0.189	0	
7/11/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	57.04	4.57	0.186	0	10:55 - before purging

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
7/11/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	<u>(1 % 3 9 % 5 % 5 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6</u>	2.01	0.082	0.2	11:20 - after purging
7/11/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	57.82	3.79	0.155	0.2	12:35 - after rebound
8/10/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	57.17	4.44	0.133	0	
9/21/2017	59-PW-14	60-62	1	62	61.65	0.338	2.53	57.04	4.61	0.188	0	
11/1/2017	59-PW-14	60-62	1	62	61.61	0.338	2.53	58.94	2.67	0.109	0	
2/21/2018	59-PW-14	60-62	1	62	61.63	0.338	2.53	56.82	4.81	0.196	0	Screen saturated
2/21/2010	37-1 10-14	00-02	1	02	01.05	0.550	2.33	50.02	4.01	0.170	0	
3/1/2017	59-PW-14	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
5/16/2017	59-PW-14	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
9/21/2017	59-PW-14	80-82	1	82	81.65	0.447	3.35	dry	0	0	0	
11/3/2017	59-PW-14	80-82	1	82	81.65	0.447	3.35	dry	0	0	0	
								y				
3/1/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	8.44	1.75	0.071	0.1	Bailed > slow recharge
3/16/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	7.5	2.69	0.110	0	
4/6/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	7.39	2.80	0.114	3	19 min to pump dry, slow recharge
5/16/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	7.53	2.66	0.109	0	
6/15/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	7.61	2.58	0.105	0	
7/11/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	7.58	2.61	0.106	0	9:15 - before purging
7/11/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	9.15	1.04	0.042	1.5	9:40 - after purging
7/11/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	9.10	1.09	0.044	0	12:37 - after rebound
8/10/2017	59-PW-15	8-10	1	10	10.19	0.055	0.41	8.67	1.52	0.062	0	
9/21/2017	59-PW-15	8-10	1	10	10.21	0.055	0.41	8.77	1.44	0.059	0	
11/2/2017	59-PW-15	8-10	1	10	10.31	0.055	0.41	9.96	0.35	0.014	0	
2/21/2018	59-PW-15	8-10	1	10	10.19	0.055	0.41	7.31	2.88	0.118	0	
3/1/2017	59-PW-15	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-15	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-15	20-22	1	22	21.45	0.120	0.90	dry	0	0	0	

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
11/2/2017	59-PW-15	20-22	1	22	21.45	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-15	30-32	1	32	NM	0.175	1.31	dry	0	0	0	
5/16/2017	59-PW-15	30-32	1	32	NM	0.175	1.31	dry	0	0	0	
9/21/2017	59-PW-15	30-32	1	32	31.65	0.175	1.31	dry	0	0	0	
11/2/2017	59-PW-15	30-32	1	32	31.65	0.175	1.31	dry	0	0	0	
3/1/2017	59-PW-15	60-62	1	62	NM	0.338	2.53	dry	0	0	0	
5/16/2017	59-PW-15	60-62	1	62	NM	0.338	2.53	dry	0	0	0	
9/21/2017	59-PW-15	60-62	1	62	61.34	0.338	2.53	dry	0	0	0	
11/2/2017	59-PW-15	60-62	1	62	61.34	0.338	2.53	dry	0	0	0	
3/1/2017	59-PW-15	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
5/16/2017	59-PW-15	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
9/21/2017	59-PW-15	80-82	1	82	81.65	0.447	3.35	dry	0	0	0	
11/2/2017	59-PW-15	80-82	1	82	81.65	0.447	3.35	dry	0	0	0	
3/1/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	3.94	5.71	0.233	0.25	bailed > fast recharge
3/16/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	4.26	5.39	0.220	0	
4/6/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	4.22	5.43	0.222	0	
5/16/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	4.81	4.84	0.197	3	fast recharge
6/15/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	5.05	4.60	0.188	2.4	fast recharge
7/11/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	5.35	4.30	0.175	0	10:00 - before purging
7/11/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	5.55	4.10	0.167	1.25	10:35 - after purging
7/11/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	5.35	4.30	0.175	0	10:38 - after rebound
8/10/2017	59-PW-16	8-10	1	10	9.65	0.055	0.41	5.71	3.94	0.161	0	
9/21/2017	59-PW-16	8-10	1	10	9.66	0.055	0.41	6.74	2.92	0.119	0	
11/1/2017	59-PW-16	8-10	1	10	9.66	0.055	0.41	8.00	1.66	0.068	0	(a)

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
2/21/2018	59-PW-16	8-10	1	10	9.65	0.055	0.41	4.68	4.97	0.203	0	Screen saturated
3/1/2017	59-PW-16	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-16	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-16	20-22	1	22	21.57	0.120	0.90	dry	0	0	0	
11/1/2017	59-PW-16	20-22	1	22	21.57	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-16	30-32	1	32	NM	0.175	1.31	dry	0	0	0	
5/16/2017	59-PW-16	30-32	1	32	NM	0.175	1.31	dry	0	0	0	
9/21/2017	59-PW-16	30-32	1	32	31.55	0.175	1.31	dry	0	0	0	
11/1/2017	59-PW-16	30-32	1	32	31.55	0.175	1.31	dry	0	0	0	
3/1/2017	59-PW-16	60-62	1	62	NM	0.338	2.53	dry	0	0	0	
5/16/2017	59-PW-16	60-62	1	62	NM	0.338	2.53	dry	0	0	0	
9/21/2017	59-PW-16	60-62	1	62	59.97	0.338	2.53	dry	0	0	0	
11/3/2017	59-PW-16	60-62	1	62	59.97	0.338	2.53	dry	0	0	0	
3/1/2017	59-PW-16	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
5/16/2017	59-PW-16	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
9/21/2017	59-PW-16	80-82	1	82	81.35	0.447	3.35	dry	0	0	0	
11/3/2017	59-PW-16	80-82	1	82	81.35	0.447	3.35	dry	0	0	0	
3/1/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	3.97	5.76	0.235	0	
3/16/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	4.72	5.01	0.204	0	
4/6/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	4.7	5.03	0.205	0	
5/16/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	5.33	4.40	0.180	3.8	slow recharge
6/15/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	6.54	3.19	0.130	2.6	slow recharge
7/11/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	7.16	2.57	0.105	0	no access to purge well

Date	Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	Total Well Depth (ft bgs)	Well Volume (cf)	Well Volume (gal)	Depth to Water (ft bgs)	Height of Water Column (ft)	Volume of Water in Well (gal)	Volume of Water Pumped (gal)	Notes
	•								· · ·			Notes
8/10/2017	59-PW-17	8-10	1	10	9.73	0.055	0.41	8.10	1.63	0.067	0	
9/21/2017	59-PW-17	8-10	1	10	9.75	0.055	0.41	8.84	0.91	0.037	0	
11/3/2017	59-PW-17	8-10	1	10	9.75	0.055	0.41	muddy	NC	0	0	
2/21/2018	59-PW-17	8-10	1	10	9.73	0.055	0.41	5.73	4.00	0.163	0	Screen saturated
3/1/2017	59-PW-17	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
5/16/2017	59-PW-17	20-22	1	22	NM	0.120	0.90	dry	0	0	0	
9/21/2017	59-PW-17	20-22	1	22	21.43	0.120	0.90	dry	0	0	0	
11/3/2017	59-PW-17	20-22	1	22	21.43	0.120	0.90	dry	0	0	0	
3/1/2017	59-PW-17	30-32	1	32	NM	0.175	1.31	dry	0	0	0	
5/16/2017	59-PW-17	30-32	1	32	NM	0.175	1.31	dry	0	0	0	
9/21/2017	59-PW-17	30-32	1	32	31.44	0.175	1.31	dry	0	0	0	
11/3/2017	59-PW-17	30-32	1	32	31.44	0.175	1.31	dry	0	0	0	
3/1/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	60.74	0.80	0.033	0	
3/16/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	60.45	1.09	0.044	0	
4/6/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	60.16	1.38	0.056	0	
5/16/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	59.92	1.62	0.066	0	
6/15/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	59.92	1.62	0.066	0	
7/11/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	60.00	1.54	0.063	0	no access to purge well
8/10/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	60.16	1.38	0.056	0	
9/21/2017	59-PW-17	60-62	1	62	61.54	0.338	2.53	60.22	1.32	0.054	0	
11/2/2017	59-PW-17	60-62	1	62	61.65	0.338	2.53	60.62	1.03	0.042	0	
2/21/2018	59-PW-17	60-62	1	62	61.51	0.338	2.53	60.39	1.12	0.046	0	0.88 ft exposed screen
	-			-								P · · · · · · · · ·
3/1/2017	59-PW-17	80-82	1	82	NM	0.447	3.35	dry	0	0	0	
5/16/2017	59-PW-17	80-82	1	82	NM	0.447	3.35	dry	0	0	0	

											Volume of	
		Sample	Well	Depth to	Total Well	Well		Depth to	Height of Water	Volume of	Water	
		Depth	Diameter	Bottom	Depth	Volume	Well Volume	Water	Column	Water in Well	Pumped	
Date	Sample Location	(feet bgs)	(in.)	(ft)	(ft bgs)	(cf)	(gal)	(ft bgs)	(ft)	(gal)	(gal)	Notes
9/21/2017	59-PW-17	80-82	1	82	81.35	0.447	3.35	dry	0	0	0	
11/3/2017	59-PW-17	80-82	1	82	81.35	0.447	3.35	dry	0	0	0	

Red text = wells with >1 ft of water

(a) = below top of pump before start of purging. This is the post- pumping value

(b) = NR - water level rose too quickly to collect a steady read

NC = not calculated

3/1/17 and 5/16/17: Checked all wells for water

3/16/17: The objective of the field effort was to check wells that had water in them on 03.01.17 to see if there was any change. Wells that were dry on 03.01.17 were not checked unless they are new wells installed in January and February 2017. Water was not pumped from any of the wells.

4/6/17: Only check wells that had water in them on 03.01.17

5.16.17: Checked all wells for the presence of water.

6.15.17: only checked the 7 wells with >1 ft of water

7.11.17 only check the 7 wells with >1 ft water, purged 5 of the wells

8.10.17: only check the 7 wells with >1 ft water

9.21.17: check all wells for the presence of water and total depth.

11.1.17: check all wells for presence of water; baseline soil vapor monitoring event

2.21.18: only check the 7 wells that previously had > 1 ft water

maximum = 8.16

			B4260, Fo	ormer Mather A	AFB	
		Barometric				
		Pressure	Wind	Wind Speed	Gust Speed	Average Barometric Pressure
Date	Time	(in. Hg)	Direction	(mph)	(mph)	(in. Hg)
1/26/2017	5:49 AM	30.42	Calm	Calm		
	6:53 AM	30.43	Calm	Calm		
	7:55 AM	30.43	Calm	Calm		Indoor and ambient air
	8:50 AM	30.45	NNW	5.8		sampling:
	9:45 AM	30.45	NNW	4.6		08:09 am to 4:25 pm
	10:45 AM	30.47	NNW	9.2		
	11:45 AM	30.45	NNW	11.5		Average barometric pressure =
	12:45 PM	30.43	NNW	15	20.7	30.43 in. Hg
	1:50 PM	30.41	NNW	13.8		
	2:45 PM	30.41	NNW	13.8	19.6	
	3:45 PM	30.41	NNW	11.5	19.6	
	4:45 PM	30.41	NNW	10.4	16.1	
	5:45 PM	30.42	NNW	5.8		
	6:45 PM	30.42	Ν	4.6		
1/27/2017		00 5 4		0.5		
	5:50 AM	30.54	NNE	3.5		
	6:45 AM	30.55	ENE	6.9		
	7:45 AM	30.55	Calm	Calm		Sub-Slab sampling:
		20 57	Calma	Colmo		08:22 to 09:33 am
	8:50 AM	30.56	Calm	Calm		A
	10:50 AM	30.58	WSW	5.8		Average barometric pressure =
	10:50 AIVI	30.38	VV 3 VV	0.0		30.56 in. Hg
	11:50 AM	30.57	W	3.5		

Table B-3. Indoor Air and Sub-Slab Vapor Sampling Weather Parameters (January 26 and 27, 2017) B4260. Former Mather AFB

in. Hg = inches of Mercury mph = miles per hour Indoor Air Sampling Event Field Logs

URS Air Sampling Data Sheet
Installation: <u>MATHR</u> Project: <u>S59B</u> Event: <u>RND1</u>
Boring Name:59-1A-01 Date:26-17
_ocation Description: SE corner of Pilots Lounge, on top of white/red cabinet (Direction and Distance from MW Number or Building Number and Corner)
At what height above ground was sampler placed? $\underline{++'}$
Nere existing volatiles found during screening removed? None found SEE INVENTORY FOR
Nere any new volatiles in the sample area? If an a rplane is active to the south of the building, exhaust comes through the front door Neather Conditions: when door is opened.
Neather Conditions: when door is opened.
Rain in last 24 hours? No Sampler(s): JR/TH
$\frac{-28.5 \text{ inly}}{(\text{Complete sample train})} = \frac{-28.5 \text{ inly}}{-28.5 \text{ inly}}$ Sampling Method: Indoor Air w/8hr vegulator, lot canister PID Serial Number: 10-007425 Sample Start (Date/Time): 1-26-17 0809 Sample End Time (Date/Time): 1-26-17 1615 A
IORMAL SAMPLE
Sample Number: <u>59-1A-01-NS</u> Sample Number: <u>NA</u>
Canister Number:
nitial Canister Vacuum: Final Canister Vacuum:
UPLICATE SAMPLE
ample Number: <u>59-IA-01-FD</u> Sample Number: <u>N</u> A
anister Number: <u>NØ436</u>
itial Canister Vacuum: -28.5 in hg Final Canister Vacuum: -14.5 in hg

URS Air Sampling Data Shee	et
Installation:MATHR Project:	S59B Event: RND1
Boring Name:59-1A-02	Date: 1-26-17
Location Description: NW Corner of the (Direction and Distar	e IT office on top of printer
At what height above ground was sampler placed?	
Were existing volatiles found during screening removed?	None found - BEE INVENTORY FOR MORE INFO
Were any new volatiles in the sample area? <u>No</u>	
Weather Conditions:	
Rain in last 24 hours?	Sampler(s): JR/TH
$\frac{-30}{(\text{Complete sample train})}$ Sampling Method: <u>Indewr Air w/8hr reg</u> PID Serial Number: <u>110-007425</u> Sample Start (Date/Time): <u>1-26-17</u> 0800 Sample End Time (Date/Time): <u>1-26-17</u> 1612	gulator, 62 conster
NORMAL SAMPLE Sample Number: 59-1A-02-NS Canister Number: 33871	Sample Number: NA
Initial Canister Vacuum: -30 in hg	Final Canister Vacuum:
DUPLICATE SAMPLE	
Sample Number: NA	Sample Number:
Canister Number:	
Initial Canister Vacuum:	Final Canister Vacuum:

URS Air Sampling Data Sheet
Installation:
Boring Name: 59-1A-03 Date: 1-26-17
Location Description: NW corner of receptionst area, on top of back cabinet (Direction and Distance from MW Number or Building Number and Corner)
At what height above ground was sampler placed?5 '
Were existing volatiles found during screening removed? None found - SEE INVENTORY FOR MORE INFO
Were any new volatiles in the sample area? $\mathcal{N}\mathcal{O}$
Weather Conditions:
Rain in last 24 hours? NO Sampler(s): OR TH
SAMPLE TRAIN LEAK CHECK Initial Vacuum Reading: -30 inho (Complete sample train) Sampling Method: Indoor A:r w/8hr vegulator, bL canister PID Serial Number: 110-007425 Sample Start (Date/Time): 1-26-17 0809 Sample End Time (Date/Time): 1-26-17 1613 A
NORMAL SAMPLE Sample Number: $59-1A-03-NS$ Sample Number: N/A Canister Number: 00394
Initial Canister Vacuum: -30 inhy Final Canister Vacuum: -6 inho
DUPLICATE SAMPLE
Initial Canister Vacuum: Final Canister Vacuum:

URS Air Sampling Data Sheet		
Installation:	S59B	Event: RND1
Boring Name:59-1A-04		Date: 1-26-17
	e from MW Number or Building N	top of "wood" file box lumber and Corner)
At what height above ground was sampler placed?	4.5'	-
Were existing volatiles found during screening removed?	None found	- SEE INVENTORY ROR HORE INTED
Were any new volatiles in the sample area? No		_
Weather Conditions:		_
Rain in last 24 hours? <u>No</u>	Sampler(s)	JR/TH
Initial Vacuum Reading: -30 'm/g (Complete sample train) Sampling Method: Indoor Air w/8hr read PID Serial Number: IIO - 007425 Sample Start (Date/Time): I-26-17 0809 Sample End Time (Date/Time): I-26-17 1614		canister
NORMAL SAMPLE Sample Number: $59-14-04-N5$ Canister Number: $N0447$ Initial Canister Vacuum: -30 in ha	Sample Number:/	A - 6.5 inhg
DUPLICATE SAMPLE)
Sample Number: NA	Sample Number:	
Canister Number:		
Initial Canister Vacuum:	Final Canister Vacuum	

Baseline Soil Vapor Monitoring Event Field Logs

URS Downhole Soil Gas Sampling Data Sheet

3

Installation: MATHER Project:	Event: BASELINE
Boring Name:59 - PW - 05 - 20	Date: 11-7-17
Location Description:	from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):A/	Weather Conditions: Weather Conditions: Veather Conditions: Veathe
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fain Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging:	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hammer MINI NAE 2000 PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Re	Pre: <u>NO UE</u> Maximum: Post: UN BRUE アロックビデ S If leo UA aterial: O Soil Grout Bentonite O Other:
NORMAL SAMPLE Sample Number: <u>59-PW-05-10-k</u>	Sample Time:2_0 8
Sample Number: <u>59-PW-05-10-k</u>	15
Canister Number:N 1994	Attempts to Sample:
Canister Number:N I G G G G G G G G G G G G G G G G G G	Evacuation Time:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number: P A	Canister Number:
المنافعة منافعة المنافعة المنافعة المنافعة المنافعة المنافعة منافعة منافعة منافعة منافعة منافعة منافعة المنافعة منافعة منافعة منافعة منافعة منافعة المنافعة منافعة مناف منافعة منافعة منفعة منافعة منفعة منفعة منافعة منافعة منافعة منفعة	Final Canister Volume: (-) inch Hg

PID 2 0.5

Installation: MATHER Project:	Event: BASELINE
Boring Name: 59-AW -05-40	Date: 11-7-17
Location Description:	from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fa Initial Vacuum Reading Above ground, complete sample train: After probe placement, before purging:	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Compliant Mathematic The Clide Hammer The Hand Auger Hale The H	
PID Serial Number: PID Serial Number: PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Re	aterial: 🛄 Soil 🔲 Grout 🔲 Bentonite 🛄 Other:
PID Serial Number: PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M	UNABLE TO USE SHEAD Pre: Maximum: Post: aterial: Soil Grout Bentonite Other: etracted:
PID Serial Number: PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Readings	ON ABLE TO USE SHROUP Pre: Maximum: Post: aterial: Doil D Grout D Bentonite D Other: etracted: Sample Time:
PID Serial Number: <u>PT_104</u> PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Re NORMAL SAMPLE Sample Number: <u>59-Pw-05-</u>	$ONABLE To OSE SHROP$ Pre: Maximum: Post: aterial: \Box Soil \Box Grout \Box Bentonite \Box Other: etracted: Sample Time: $I2/9$ $3O - NS$
PID Serial Number: PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Re NORMAL SAMPLE	Pre: Maximum: Post: aterial: \Box Soil \Box Grout \Box Bentonite \Box Other: etracted: Sample Time: Sample Time: 12.19 30 - NS Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less)
PID Serial Number: PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Re NORMAL SAMPLE	ONABLE To USE SHROUP Post: Pre: Maximum: Post: aterial: Soil Grout Bentonite Other: etracted: Sample Time: 12.19 $3O - NS$ Attempts to Sample: Evacuation Time: Note: Two liters/minute or less) Purge Volume:
PID Serial Number: PID Serial Number: PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Re NORMAL SAMPLE	$ONABLE To OSE SHROUP$ Pre: Maximum: Post: aterial: \Box Soil \Box Grout \Box Bentonite \Box Other: etracted: sample Time: $I > I 9$ $3 O - N \le$ Attempts to Sample: I Evacuation Time: $(Note: Two liters/minute or less)$ Purge Volume:
MIN: $IAE 2000$ PID Serial Number: PID PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill M Distance Probe Driven: Length Re NORMAL SAMPLE Sample Number: $59 - Pw - 05 - 6$ Canister Number: 5526 Begin/End Depths of Sample: $1 - 6$ Vacuum: $(-)$ inch Hg Initial Canister Vacuum: -2.5	ONABLE To USE SHROUP Pre: Maximum: Post: aterial: Osil Orout Bentonite Other: aterial: Soil Orout Bentonite Other: etracted: Sample Time: 30 -NS Attempts to Sample: I Evacuation Time: (Note: Two liters/minute or less) Purge Volume:

•

PID = 2.2

URS Downhole Soil Gas Sampling Data Sheet

10

	Installation: Project:	Event: BASELINE	
	Boring Name: 59-PW -05-400	Date: 11/7/17	
	Location Description:	ance from MW Number or Building Number and Corner)	
	Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:	
	Departure Time: Sampler(s):	(Rain in last 24 hours?) Yes	
	Initial Vacuum Read	em fails the leak check procedure, check all fittings and re-test the system.)	
	Above ground, complete sample train: -27.5		
After probe placement,			
	before purging: <u>WL 59.1</u>		
	PID Serial Number: PID Readings (ppr Apparent Moisture: Dry Dry Saturated Backfil Distance Probe Driven: Length		
5/15 SAC	NORMAL SAMPLE	Sample Time:	
VMG 04/16/15 SAC	Sample Number: <u>59-PW-05</u>	-50-NS	
Sheet.indd -	Canister Number: 30 5 9	Attempts to Sample:	
-Gas-Data-	Begin/End Depths of Sample: /	Evacuation Time:	
wnhole	Vacuum: (-) inch	Hg Purge Volume:	
H:\Graphics\Data Mgmt\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.it	Initial Canister Vacuum: 30 (-) inch	Hg Final Canister Volume: (-) inch Hg	
nt/Mather/04	FIELD DUPLICATE	Sample Time:	
s\Data Mgn	Sample Number:	Canister Number:	
:\Graphics	Initial Canister Vacuum: (-) inch	Hg Final Canister Volume: (-) inch Hg	

PID = 0.4

0

URS Downhole Soil Gas Samplin	ng Data Sheet			
Installation: MATHE Project: BAS	ELINE Event: 11-7-17			
Boring Name: 59-PW-05-90	Date: 11 - 7 - 17			
Location Description:				
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:			
Departure Time: Sampler(s): A / T H	Weather Conditions: No (Rain in last 24 hours?) Yes			
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train:24.5 After probe placement, before purging:	s the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:			
Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Pneumatic Hydraulic (Direct Push) Well NNN RAF 7000 NABLE TOUSESHROW Plo Serial Number: PID Readings (ppmv): Pre: Maximum: Post: Apparent Moisture: Dry Moist Saturated Backfill Material: Soil Grout Bentonite Other: Distance Probe Driven: Length Retracted:				
NORMAL SAMPLE	Sample Time: 1247			
Sample Number: 59-1-05-70-	NS			
Canister Number: NZ651	Attempts to Sample:			
Begin/End Depths of Sample: // Vacuum:	Evacuation Time:			
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg			
FIELD DUPLICATE	Sample Time:			
Sample Number:	Canister Number:			
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg			

P10 21.2

URS Downhole Soil Gas Sampling Data Sheet				
Installation:MATTAL Project:	Event: BASELINE			
Boring Name:59-PW-06-	20 Date: <u>11-7-17</u>			
Location Description: <u>FAST of HADGE DN</u> (Direction and Distance fr	rom MW Number or Building Number and Corner)			
Arrival Time: Lithology at Sample Point:				
Departure Time: Sampler(s):AA/_77+	(Rain in last 24 hours?)			
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging: @re.us	s the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:			
Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Pneumatic Hydraulic (Direct Push) Well PID Serial Number: PID Readings (ppmv): Pre: Maximum: Post: Post: Apparent Moisture: Dry Moist Saturated Backfill Material: Soil Grout Bentonite Other: Distance Probe Driven: Length Retracted:				
NORMAL SAMPLE	Sample Time: 0920			
Sample Number: <u>59-PW-06-11-</u>	- NS			
Canister Number: <u>S0150</u>	Attempts to Sample:/			
Begin/End Depths of Sample://	Evacuation Time:			
Vacuum: (-) inch Hg	Purge Volume:/ 2			
Initial Canister Vacuum: 30 (-) inch Hg	Final Canister Volume: (-) inch Hg			
FIELD DUPLICATE	Sample Time:			
Sample Number:	Canister Number:			
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg			

. N

<

H:\Graphics\Data MgmtMather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

1.5 FID SAMPLE =

URS Downhole Soil Gas Sampl	ing Data Sheet
Installation:MATITER Project:	Event: BASECINE
Boring Name: 59-PW-06-40	Date:
Location Description: EAST of HANGen	o for MM Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):A A / Ţ /·	Weather Conditions: Image: Property of the second seco
SAMPLE TRAIN LEAK CHECK Performed before each sam and not lose more than 10% of the maximum pump vacuum. If the system is Initial Vacuum Reading Above ground, complete sample train: -20.5 After probe placement, before purging: pre-wc 35.9	fails the leak check procedure, check all fittings and re-test the system.) g: Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole H MINI PAF 2000 PID Serial Number: <u>PT 104</u> PID Readings (ppmv) Apparent Moisture: Dry Moist Saturated Backfill M	UNABLE TO USE SHEOUP : Pre: Maximum: Post: Naterial: Soil Grout Bentonite Other:
Distance Probe Driven: Length R	
NORMAL SAMPLE	Sample Time: O Q 3 Q
Sample Number: <u>59 - PW - 06 - 31</u>	
Canister Number: N2663	_ Attempts to Sample:
Begin/End Depths of Sample: //	Evacuation Time:
Vacuum: (-) inch Hg	
Initial Canister Vacuum: O (-) inch Hg	Purge Volume:
	Purge Volume:
FIELD DUPLICATE	Purge Volume:
Sample Number: $Sq - NW - OQ - 31$ Canister Number: $N 2 Q Q$ Begin/End Depths of Sample: I Vacuum: $-3OQ Q$ Initial Canister Vacuum: $-3O$ FIELD DUPLICATE Sample Number: $N P$ Initial Canister Vacuum: $(-)$ inch Hg Initial Canister Vacuum: $(-)$ inch Hg Initial Canister Vacuum: $(-)$ inch Hg	Purge Volume:

PID Smyle O.1

1

Installation: MATHER Project:	Event: BASELINE
Boring Name: 59-1w-06-60	Date: <u>11-7-17</u>
Location Description: EAST of HANCE MA	rom MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s): DA/7/ł	(Rain in last 24 hours?) Ves
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, レビヤー complete sample train: エレジェー こフ	Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
After probe placement, before purging: per we 58.85	
Sampling Method: Slide Hammer Hand Auger Hole Hammer PID Serial Number: PID Readings (ppmv): I Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Ref	UNABLE TO USE SHEOUP Pre: Maximum: Post: Iterial: Soil Grout Grout Bentonite Other:
NORMAL SAMPLE	Sample Time:0959
Sample Number: <u>59 - pw - 06 - 51 - N</u>	
Canister Number: 00727	Attempts to Sample:
Begin/End Depths of Sample: /	(Note: Two liters/minute or less)
/	Purge Volume:
Initial Canister Vacuum: 29.5 (-) inch Hg	Final Canister Volume:5 (-) inch Hg
FIELD DUPLICATE	Sample Time: 0959
Sample Number: <u>59 - PW-06 - 51 - FP</u>	Canister Number: <u>S</u> 0017
Initial Canister Vacuum: 29,5 (-) inch Hg	Final Canister Volume: (-) inch Hg
PID = .5	

Installation: Project:	Event: BASELINE
Boring Name: <u>59-PW-06-9</u>	0 Date: 11/7/17
Location Description: <u>VAULY BAST of IMWO-</u> (Direction and Distance fi	om MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s):	(Rain in last 24 hours?) Ves
After probe placement	s the leak check procedure, check all fittings and re-test the system.)
Sampling Method: Slide Hammer Hand Auger Hole Ha MINI KAE 2000 PID Serial Number: <u>PI_104</u> PID Readings (ppmv): I	nd Drive Pneumatic Hydraulic (Direct Push) Well UNABLE TO USE SHEOU) Pre: Maximum: Post:
Apparent Moisture: Dry Dry Moist Saturated Backfill Ma	terial: 🔲 Soil 🔲 Grout 🛄 Bentonite 🛄 Other:
Distance Probe Driven: Length Ret	tracted:
NORMAL SAMPLE	Sample Time: (ひ
Sample Number: 59- PW-06-70-NS	
Canister Number: $\mu \ge 0/9$	Attempts to Sample:
Begin/End Depths of Sample: /	Evacuation Time:
Vacuum:2 4 , 5 (-) inch Hg	Purge Volume:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number:	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

2

PID = .7

1.1

Begin/End Depths of Sample: / / Evacuation Time: (Note: Two liters/minute or less) Vacuum: (-) inch Hg Purge Volume: (L Initial Canister Vacuum: - 3 0 (-) inch Hg Final Canister Volume: - 5 (-) inch FIELD DUPLICATE Sample Time:		Installation: MATILE Project:	Event: BASECINE
Arrival Time: Lithology at Sample Point: Initial Vacuum Reading: Departure Time: Sampler(s): TH/DA Weather Conditions: (Rain in last 24 Hours?) SAMPLE TRAIN LEAK CHECK Performed before each sample. The system must hold vacuum for a minimum of one minute and not lose more than 10% of the maximum pump vacuum. If the system fails the leak check procedure, check all fittings and re-test the system.) Initial Vacuum Reading: Final Vacuum Reading: Above ground, complete sample train: -20.5 -20.5 After probe placement, before purging: $Wu \ 19.9$ $Post \ WL \ 19.9$ Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Proeumatic PID Serial Number: $Pil 0.9^{-1}$ PID Readings (ppmv): Pre: 47 Maximum: Post: Distance Probe Driven: Length Retracted:		Boring Name: 59 - PW - 07 - 10	Date: 11-7-17
Arrival Time: Lithology at Sample Point: Initial Vacuum Reading: Departure Time: Sampler(s): TH/DA Weather Conditions: (Rain in last 24 Hours?) SAMPLE TRAIN LEAK CHECK Performed before each sample. The system must hold vacuum for a minimum of one minute and not lose more than 10% of the maximum pump vacuum. If the system fails the leak check procedure, check all fittings and re-test the system.) Initial Vacuum Reading: Final Vacuum Reading: Above ground, complete sample train: -20.5 -20.5 After probe placement, before purging: $Wu \ 19.9$ $Post \ WL \ 19.9$ Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Proeumatic PID Serial Number: $Pil 0.9^{-1}$ PID Readings (ppmv): Pre: 47 Maximum: Post: Distance Probe Driven: Length Retracted:		Location Description:	rom MW Number or Building Number and Comer)
Departure Time: Sampler(s): IHIDIT (Rain in last 24 Hours?) Yes SAMPLE TRAIN LEAK CHECK Performed before each sample. The system must hold vacuum for a minimum of one minute and not lose more than 10% of the maximum pump vacuum. If the system fails the leak check procedure, check all fittings and re-test the system.) Initial Vacuum Reading: Above ground, complete sample train: -20.5 -20.5 After probe placement, before purging: $Per W_{-}$ 19.9 Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Preumatic PID Serial Number: $Pii 0$ Pii 0 Readings (ppmv): Pre: 47 Maximum: Doy Moist Saturated Backfill Material: Soil Grout Bentonite Other: Distance Probe Driven: Length Retracted:			
and not lose more than 10% of the maximum pump vacuum. If the system fails the leak check procedure, check all fittings and re-lest the system.) Initial Vacuum Reading: Above ground, complete sample train: P 20.5 After probe placement, before purging: P 20.5 After probe placement, D 3 After probe placement, D 4 A parent Moisture: D 7 Apparent Moisture: D 7 A probe placement: D 7 A		Departure Time: Sampler(s):TH/DA	(Rain in last 24 hours?) Ves
LEAK TEST MINIR 2000 PID Serial Number: PID Readings (ppmv): Pre: <u>47</u> Maximum: Post: Apparent Moisture: Dry Moist Istance Probe Driven: Length Retracted: NORMAL SAMPLE Sample Time: <u>0853</u> Sample Number: 59 - PW - 07 - 10 - NS		and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train: ーンの。 く	the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: -20.5
		LEAK TEST MINIR 2000 PID Serial Number: <u>PIL 104</u> PID Readings (ppmv): F Apparent Moisture: Dry Moist Saturated Backfill Ma	Pre: <u>47</u> Maximum: Post: terial: Soil Grout Bentonite Other:
	6/15 SAC	NORMAL SAMPLE	Sample Time:0853
Canister Number: N3132 Attempts to Sample: Begin/End Depths of Sample: Evacuation Time: Vacuum: (-) inch Hg Purge Volume: Initial Canister Vacuum: Government	VMG 04/1		NS
Begin/End Depths of Sample: Image: Image	heet.indd -	Canister Number: N3132	Attempts to Sample:/
Vacuum:	3as-Data-S	Begin/End Depths of Sample://	
Initial Canister Vacuum: -30 (-) inch Hg Final Canister Volume: FIELD DUPLICATE Sample Time:	ownhole-C	Vacuum: (-) inch Hg	
FIELD DUPLICATE Sample Time:	15-Mather-D	Initial Canister Vacuum: -30 (-) inch Hg	Final Canister Volume: (-) inch Hg
	nt/Mather/04-	FIELD DUPLICATE	Sample Time:
ଞ୍ଚି Sample Number: ሥ/ନ Canister Number:	VData Mgr	Sample Number:	Canister Number:
المراجعة المراجع المراجعة المراجعة المر مراجعة المراجعة المراجعة المراجعة المراجعة المر مراجعة المراجعة المراح	H:\Graphics	Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

PIP Shuple \$17

Installation: Mather Pr	roject:	Event: Baseline
Boring Name: <u>59-Pw-08-10</u>	0	Date: 14/7/17
Location Description:	Direction and Distance	from MW Number or Building Number and Comer)
		Initial Vacuum Reading:
Departure Time: Sampler(s): _	the IDA	Weather Conditions: In No (Rain in last 24 hours?) Yes
and not lose more than 10% of the maximum pump va	acuum. If the system fa /acuum Reading:	the system must hold vacuum for a minimum of one minute ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: -2° , 5
After probe placement		Post WL 19.53
Leak Test PID Serial Number: Min 2000 PID I	Readings (ppmv):	and Drive Pneumatic Hydraulic (Direct Push) Well Pre: <u>26, 2</u> Maximum: Post:
Leck test PID Serial Number: <u>Mini 2000</u> PID P Apparent Moisture: Dry Dry Moist Sat	Readings (ppmv): turated Backfill Ma	Pre: <u>26</u> , <u>7</u> Maximum: Post: aterial: Grout Grout Bentonite Other :
Leach Test PID Serial Number: <u>Mini 2000</u> PID F Apparent Moisture: Dry Moist Satu Distance Probe Driven:	Readings (ppmv): turated Backfill Ma	Pre: <u>26</u> , <u>7</u> Maximum: Post: aterial: Grout Grout Bentonite Other :
Leak Test PID Serial Number: Mini 2000 PID F Apparent Moisture: Dry Moist Sate Sate Normal Sample Sample Number: 59 - PW - 02	Readings (ppmv): turated Backfill Ma	Pre: <u>26</u> , <u>2</u> Maximum: Post: aterial: <u>Soil</u> Grout <u>Bentonite</u> Other: etracted: Sample Time: <u>08</u> <u>2</u> <u>6</u>
Leak Test PID Serial Number: Mini 2000 PID F Apparent Moisture: Dry Moist Sate Sate Normal Sample Sample Number: 59 - PW - 02	Readings (ppmv): turated Backfill Ma Length Re	Pre: <u>26</u> , <u>2</u> Maximum: Post: aterial: <u>Soil</u> Grout <u>Bentonite</u> Other: etracted: Sample Time: <u>08</u> <u>2</u> <u>6</u>
Veck Fest PID Serial Number: $Min_2 200$ PID F Apparent Moisture: Dry Moist Sate Distance Probe Driven:	Readings (ppmv): turated Backfill Ma	Pre: <u>26</u> , <u>2</u> Maximum: Post: aterial: <u>Soil</u> Grout <u>Bentonite</u> Other: etracted: Sample Time: <u>083-6</u>
Verth Fest PID Serial Number: $MiN_2 2000$ PID F Apparent Moisture: Dry Moist Saturation Distance Probe Driven:	Readings (ppmv): turated Backfill Ma Length Re A.S	Pre: 26.2 Maximum: Post: aterial: Soil Grout Bentonite Other: etracted: Sample Time: Sample Time: Evacuation Time: (Note: Two liters/minute or less) Purge Volume:
Leach Test PID Serial Number: $MiN_2 2000$ PID F Apparent Moisture: \Box Dry \Box Moist \Box Sate Distance Probe Driven:	Readings (ppmv): turated Backfill Ma Length Re A.S	Pre: 26, 2 Maximum: Post: aterial: Soil Grout Bentonite Other: etracted: Sample Time: Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less)
Leach Test PID Serial Number: Min_2000 PID F Apparent Moisture: Dry $Moist$ $Sate Distance Probe Driven:$	Readings (ppmv): turated Backfill Ma Length Re 3 - 10 - NS (-) inch Hg (-) inch Hg	Pre: 26.2 Maximum: Post: aterial: Soil Grout Bentonite Other: etracted: Sample Time: Sample Time: Evacuation Time: (Note: Two liters/minute or less) Purge Volume:
Leach Test PID Serial Number: Min_2000 PID F Apparent Moisture: Dry $Moist$ $Sate Distance Probe Driven:$	Readings (ppmv): turated Backfill Ma Length Re 3 - 10 - NS - 1 - NS (-) inch Hg (-) inch Hg	Pre: 26, 2 Maximum: Post: aterial: Soil Grout Bentonite Other: ptracted: Sample Time: Sample Time: Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Purge Volume: Final Canister Volume: (-) inch He

PiD Sample = 2.0

URS Downhole Soil Gas	Sampli	ng Data Sheet	
Installation: MATHER Projec			
Boring Name: $59 - Pw - C$	9 A	Date: <u> / 7 / / 7</u>	7
Location Description:		rom MW Number or Building Number and Corner)	
Arrival Time: Lithology at Samp			
Departure Time: Sampler(s):	A/TH	Weather Conditions: Image: Conditions (Rain in last 24 hours?) (Rain in last 24 hours?) Image: Conditions (Rain in last 24 hours?)	
Above ground, -27	<i>If the system fa</i> im Reading:	ls the leak check procedure, check all fittings and re-test the s Final Vacuum Reading:	system.)
MIN, CAE 2000 PID Serial Number:PT 10 9PID Read Apparent Moisture: Dry Moist Saturated Distance Probe Driven:	Backfill Ma	terial: 🔲 Soil 🔲 Grout 🔲 Bentonite 🔲 Other:	
NORMAL SAMPLE		Sample Time:	
	09A -10	-23	к.
Canister Number: AS980		Attempts to Sample:/	
Begin/End Depths of Sample: / _	/	Evacuation Time:	
Vacuum:	(-) inch Hg	Purge Volume:	
Vacuum: Initial Canister Vacuum:27	— (-) inch Hg	Final Canister Volume:5	(-) inch H
Sample Number: <u>S9-PW-</u> Canister Number: <u>A8980</u> Begin/End Depths of Sample: <u>1</u> Vacuum: <u>-27</u> Initial Canister Vacuum: <u>-27</u> FIELD DUPLICATE Sample Number: <u>NA</u> Initial Canister Vacuum: <u></u>		Sample Time:	ų
Sample Number:んん	****	Canister Number:	
Initial Canister Vacuum:	(-) inch Hg	Final Canister Volume:	_ (-) inch H
P10 = 31.5			

Installation: MATHER Project:	Event: BASELINE
Boring Name:	Date: <u>11 - 7 - 1 7</u>
Location Description:	om MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s): <u>DA / TH</u>	Weather Conditions: A Mo (Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train:	s the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hand MINI CAF 2000 PID Serial Number: PID Readings (ppmv): F Apparent Moisture: Dry Moist Saturated Backfill Man Distance Probe Driven: Length Ret	Pre: 54.8 Maximum: Post: terial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time:
Sample Number: <u>59 - PW - 09B - 20</u>	-NS
Canister Number: 000	Attempts to Sample:
Begin/End Depths of Sample: /	
Vacuum: (-) inch Hg	(Note: Two liters/minute or less) Purge Volume:
Initial Canister Vacuum:2.6 (-) inch Hg	
FIELD DUPLICATE	Sample Time: <u>1337</u>
Sample Number: 59-PW - 09B - 20-F	DCanister Number: <u>NZ & Z 9</u>
Initial Canister Vacuum:ンピ (-) inch Hg	Final Canister Volume: (-) inch Hg
PID = 34.2	

H:\Graphics\Data Mgmt\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

URS Downhole Soil Gas Samplin	ng Data Sheet
Installation:MATHERProject:	Event: BASELINE
Boring Name:59-PW-10A-05	Date: <u>11-7-17</u>
Location Description:	
	rom MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s): DA / TJ4	(Rain in last 24 hours?) Ves
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging:	Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hand MAD, MAE 2000 PID Serial Number: PID Readings (ppmv): F Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Ret	Pre: <u>36,5</u> Maximum: Post: terial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time:
Sample Number:59 - fw -10A - 08 -	NS
Canister Number: 12042	
Begin/End Depths of Sample: /	Evacuation Time:
Vacuum: (-) inch Hg	(Note: Two liters/minute or less)
	Purge Volume:
Initial Canister Vacuum:2 9 . 5 (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number: NA	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

P10 = 0.5

ng Data Sheet
Event: DASEZINE
0 Date: <u>11-7-17</u>
rom MW Number or Building Number and Comer)
Initial Vacuum Reading:
(Rain in last 24 hours?) Yes
e. The system must hold vacuum for a minimum of one minute Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
nd Drive Pneumatic Hydraulic (Direct Push) Well Pre: <u>31</u> <u>Soil</u> Maximum: Post: terial: Soil Grout Bentonite Other:
Sample Time:
15
Attempts to Sample:
Evacuation Time:
Purge Volume:
Final Canister Volume: (-) inch Hg
Sample Time:
Canister Number:
Final Canister Volume: (-) inch Hg

PID - 6:5

1

Installation: MATHIC Project:	Event: BASELINE
Boring Name: 59 - PW - 11 A	Date: <u>11 17</u>
Location Description:	rom MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s): <u> </u>	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train: -20 After probe placement, before purging: WL = ARY	is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Ha MINI NAE 2000 PID Serial Number: デニノのサ PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Re	Pre: 12.5 Maximum: Post: aterial: Soil Grout Bentonite Other:
Sample Number: 59-110-06-NS	Sample Time:
Sample Number: 59-PW-11A-06-NS	
Canister Number: <u>50027</u>	Attempts to Sample:
Canister Number:	Evacuation Time:
Vacuum: (-) inch Hg	Purge Volume:
Initial Canister Vacuum: <u>29.5</u> (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time: 0805
Sample Number: <u>59-PW-11A-08-FD</u>	Canister Number: N 2 732
Initial Canister Vacuum:29.5 (-) inch Hg	Final Canister Volume: (-) inch Hg
PIN = 12-5 0.0	

2.0

Installation: MATTAC Project:	Event: BASELINE
Boring Name: <u>59-NW-11 B</u>	Date: <u>11-8-17</u>
Location Description:	om MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):AA/_TH	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train:	s the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hand MINI RAF 2000 PID Serial Number: PID Readings (ppmv): F Apparent Moisture: Dry Moist Saturated Backfill Man Distance Probe Driven: Length Ref	Pre: <u>JO:6</u> Maximum: Post: terial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time:のらりフ
Sample Number: 59-AW-11B-20-PS	
Canister Number: 0 07,73	Attempts to Sample:
Begin/End Depths of Sample: /	Evacuation Time:
Vacuum: (-) inch Hg	Purge Volume:
Initial Canister Vacuum:30 (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number:	Canister Number:
Initial Canister Vacuum: (-) inch Hg	
PIP 3.8 (JUMPED TO 48.0 ppm m	OMENTARILY & RETURNED TO 3.8-4.0)

H:\Graphics\Data Mgm\\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

URS Downhole Soil Gas Sampli	ng Data Sheet
Installation: Project:	
Boring Name:59 - Pw-12A	Date: <u>10/7/17</u>
Location Description:	
(Direction and Distance f Arrival Time: Lithology at Sample Point:	rom MW Number or Building Number and Comer)
Departure Time: Sampler(s): A / T /	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fai Initial Vacuum Reading: Above ground, complete sample train:	is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hammer MINIRFICOU PID Serial Number: PID Readings (ppmv): I Apparent Moisture: Dry Moist Saturated Backfill Ma	Pre: <u>4-65</u> Maximum: Post: Iterial: Soil Grout Bentonite Other:
Distance Probe Driven: Length Ret	tracted:
NORMAL SAMPLE	Sample Time:
Sample Number: 59 - AW - 12A - 08 - NS)
Canister Number:	Attempts to Sample:
Begin/End Depths of Sample: /	Evacuation Time:
Vacuum: (-) inch Hg	Purge Volume:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number:	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
7400114	

H:\Graphics\Data Mgmt\MathenD4-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

PIP-4048.

ng Data Sheet
Event: BASECINE
Date: 11-7-17
from MW Number or Building Number and Comer)
Initial Vacuum Reading:
(Rain in last 24 hours?) Ves
le. The system must hold vacuum for a minimum of one minute ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
and Drive Pneumatic Hydraulic (Direct Push) Well Pre: <u>8/3</u> Maximum: Post: Post: aterial: Soil Grout Bentonite Other:
Sample Time: 1421
Attempts to Sample:
Evacuation Time:
Purge Volume:
Final Canister Volume: (-) inch Hg
Sample Time:
Canister Number:

PID 429

nstallation: Project:	Event: Baseline
Boring Name:	Date: 11-21-17
ocation Description: East of building (Direction and Distan	
Arrival Time: Lithology at Sample Point: Departure Time: Sampler(s):TH	Masther Conditional NO
Initial Vacuum Readi	n fails the leak check procedure, check all fittings and re-test the system.) ng: Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole	Hand-Brive Pneumatic Hydraulic (Direct Push) Well w): Pre: <u>43</u> Maximum: Post:
PID Serial Number: <u>Minity 2000</u> PID Readings (ppn Apparent Moisture: Dry Moist Saturated Backfill Distance Probe Driven: Length	w): Pre: <u>43</u> Maximum: Post: Material: Soil Grout Bentonite Other: Retracted:
PID Serial Number: Mini 2000 PID Readings (ppn Apparent Moisture: Dry Moist Saturated Backfill Distance Probe Driven: Length	Material: Soil Grout Bentonite Other:
PID Serial Number: <u>Mini 2000</u> PID Readings (ppr Apparent Moistur <u>e: Dry Moist Saturated</u> Backfill Distance Probe Driven: Length NORMAL SAMPLE Sample Number: <u>59-PW-134-08-NS</u>	Anv): Pre: <u>43</u> Maximum: Post: Material: Soil Grout Bentonite Other: Retracted: Sample Time: 0942
PID Serial Number: $\underline{Mini} 200^{\circ}$ PID Readings (ppr Apparent Moisture: \Box Dry \Box Moist \Box Saturated Backfill Distance Probe Driven: Length NORMAL SAMPLE Sample Number: $\underline{59-PW-134-08-NS}$ Canister Number: \underline{N}	Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Post: Post: Post:
PID Serial Number: Mini 2000 PID Readings (ppr Apparent Moisture: Dry Moist Saturated Backfill Distance Probe Driven: Length NORMAL SAMPLE Sample Number: <u>59-PW-134-08-NS</u> Canister Number: <u>NØ334</u> Begin/End Depths of Sample: <u>7</u>	Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Hg Purge Volume: Post: Post: Post
PID Serial Number: Mini 2000 PID Readings (ppn Apparent Moisture: Dry Moist Saturated Backfill Distance Probe Driven: Length NORMAL SAMPLE Sample Number: <u>59-PW-134-08-NS</u> Canister Number: <u>NØƏƏ</u> Begin/End Depths of Sample: Vacuum:(-) inch	hv): Pre: 43 Maximum: Post: Material: Soil Grout Bentonite Other: Retracted: Sample Time: Sample Time: Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Hg Final Canister Volume: (-) inch Hg
PID Serial Number: Mixi 2000 PID Readings (ppr Apparent Moisture: Dry Moist Saturated Backfill Distance Probe Driven: Length NORMAL SAMPLE Sample Number: <u>59-PW-134-08-NS</u> Canister Number: <u>NØƏƏ</u> Begin/End Depths of Sample: <u>7</u> Vacuum: <u>(-) inch</u> Initial Canister Vacuum: <u>-30</u> (-) inch	hv): Pre: <u>43</u> Maximum: Post: Material: <u>Soil</u> Grout Bentonite Other: Retracted:

36.44 U.Lel

9.10

1

Installation: Project:		Event: Baseline
Boring Name: 591-PU-13B-20		Date: 11-2-17
Location Description: East of build	Ling	om MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample F		
Departure Time: Sampler(s):	TH	(Rain in last 24 hours?) Veather Conditions:
Above ground, complete sample train:	he system fails Reading:	s the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: 🔲 Slide Hammer 🔲 Hand Auger Ho	lole 🔲 Har gs (ppmv): F Backfill Mat	nd Drive Pneumatic Hydraulic (Direct Push) Well Pre: <u>}</u> Maximum: Post: rerial: Soil Grout Bentonite Other:
		Sample Time: 1007
Sample Number: 591-PW- 138-20-N	JS	
Canister Number:3018		Attempts to Sample:
Canister Number: <u>3018</u> Begin/End Depths of Sample: <u>7</u> Vacuum: <u>730</u> Initial Canister Vacuum: <u>-30</u> FIELD DUPLICATE Sample Number: <u>NA</u> Initial Canister Vacuum:	(-) inch Hg	Evacuation Time:
Initial Canister Vacuum:((-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE		Sample Time:
Sample Number: NA		Canister Number:
Initial Canister Vacuum: ((-) inch Hg	Final Canister Volume: (-) inch Hg
PIDISomple reed = 10,000+ 0.	ver mi	eter

	URS Downhole Soil Gas Samplin	ng Data Sheet
	Installation: Matter MATHR Project: 6053	947+ SS9B Event: Baseline
	Boring Name: 59-PW-14-30	
	Location Description: <u>South of building</u> (Direction and Distance for	n parking space rom MW Number or Building Number and Corner)
57	Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
001-500	Departure Time: Sampler(s):	Weather Conditions: No (Rain in last 24 hours?) Yes
28,132 /UL	SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fai Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging: <u>Prこいご30.36</u>	Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: ー みの、 気
1910 shind	Sampling Method: Slide Hammer Hand Auger Hole Hand Auger Hand Au	Pre: Copper Maximum: Post: Post:POst:POst: Post:POst:POst:POst:POst:POst:
7 16/15 SAC	NORMAL SAMPLE	Sample Time:
1, 7 VMG 04/	Sample Number: 59-PW-14-30-NS	
TOT7	Canister Number: <u>37311</u>	Attempts to Sample:
Jas-Data-	Begin/End Depths of Sample:/	Evacuation Time:
ownhole-(Vacuum: (-) inch Hg	Purge Volume:
15-Mather-	Initial Canister Vacuum: (-) inch Hg	Final Canister Volume:6_ (-) inch Hg
H. Sraphics/Data MomtMather/04-	FIELD DUPLICATE	Sample Time:
\Data Mqn	Sample Number:	Canister Number:
H:\Graphics	Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

PID sample Read = 21,0ppm

URS Downhole Soil Gas Sampli	
Installation: <u>MATHR</u> Project: <u>SS9</u>	B Event: Boiseline
Boring Name: 59-PW-14-60	Date:7
Location Description: South of building in (Direction and Distance	parking space from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s):R/T1+	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fa Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging:	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hand Auger H	Pre: A Oron Post: Post: aterial: Soil Grout Bentonite Other:
	Sample Time: 1130
Sample Number: <u>59-PW-14-60-NS</u> Canister Number: <u>01056</u>	Attempts to Sample:
Sample Number: $59-PW-14-60-NS$ Canister Number: 01056 Begin/End Depths of Sample: Vacuum: (-) inch Hg Initial Canister Vacuum: -29.5 (-) inch Hg FIELD DUPLICATE Sample Number: $59-PW-14-60-FD$ Initial Canister Vacuum: -29.5 (-) inch Hg	Evacuation Time:
Initial Canister Vacuum: -29.5 (-) inch Hg	Final Canister Volume: (-) inch Hg
	Sample Time: 1130
Sample Number: <u>S9-PW-14-60-FD</u>	Canister Number: 15755
Initial Canister Vacuum:(-) inch Hg	Final Canister Volume: (-) inch Hg
BID Sample = 44ppm	

ş

	Installation: Project:	Event: Baselhe
	Boring Name:59-PW-14-80	Date: (1-3-17
	Location Description: So the of building (Direction and Distance for	rom MW Number or Building Number and Corner)
	Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
	Departure Time: Sampler(s): J R [T H	Weather Conditions: X No (Rain in last 24 hours?) Yes
	SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train: ->-> After probe placement, before purging: Performed before each sample	is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
	Sampling Method: Slide Hammer Hand Auger Hole Ha PID Serial Number: Mini 2000 PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Re	Pre: <u>36</u> <u>Maximum:</u> <u>Post:</u> aterial: Soil Grout Bentonite Other:
MG 04/16/15 SAC	NORMAL SAMPLE	Sample Time: 0836
VMG 04/1	Sample Number: 59-PW-14-80-NS	
reet.indd -	Canister Number: 000758	Attempts to Sample:
as-Data-Si	Begin/End Depths of Sample://	Evacuation Time:
ownhole-G	Vacuum: (-) inch Hg	Purge Volume:î L
H:\Graphics\Data Mgmt\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.indd	Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
Mather/04-	FIELD DUPLICATE	Sample Time:
VData Mgm	Sample Number: <u>N</u> A	Canister Number:
H:\Graphics	Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
-		

PID Sample Read = 5.1 ppn

TV=81.65 1.63 77.98

Installation: <u>MATHR</u> PI	roject:	Event: Baseline
Boring Name:	28	Date: 11-2-17
Location Description: Someas	8t of b.	from MW Number or Building Number and Comer)
		Initial Vacuum Reading:
Departure Time: Sampler(s): _	JR/TH	(Rain in last 24 hours?) Ves
and not lose more than 10% of the maximum pump va	acuum. If the system fa /acuum Reading: -]-0	- 20
LEAK Test PID Serial Number: Mini 2000 PID F	Readings (ppmv): , urated Backfill Ma	and Drive Pneumatic Hydraulic (Direct Push) Well Pre: 100 Maximum: Post Paterial: Soil Grout Bentonite Other:
Leak Test PID Serial Number: <u>Mini 2000</u> PID F Apparent Moisture: Dry Dry Moist D Satu	Readings (ppmv): , urated Backfill Ma	Pre: 100 Maximum: Post: aterial: Soil Grout Bentonite Other: tracted:
Leak Test PID Serial Number: <u>Mim 2000</u> PID F Apparent Moisture: Dry Moist Satu Distance Probe Driven:	Readings (ppmv): , urated Backfill Ma Length Re	Pre: 100 Maximum: Post: aterial:] Soil] Grout] Bentonite] Other:
Leak Test PID Serial Number: <u>Min 2000</u> PID F Apparent Moisture: Dry Moist Satu Distance Probe Driven:	Readings (ppmv): urated Backfill Ma Length Re	Pre: 100 Maximum: Post: aterial: Soil Grout Bentonite Other: tracted: Sample Time:
Leak T-est PID Serial Number: Mini 2000 PID F Apparent Moisture: Dry Moist Satu Distance Probe Driven:	Readings (ppmv): urated Backfill Ma Length Re 	Pre: 100 Maximum: Post: aterial: Soil Grout Bentonite Other: tracted: Sample Time: Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less)
Leak T-est PID Serial Number: Mini 2000 PID F Apparent Moisture: Dry Moist Satu Distance Probe Driven: NORMAL SAMPLE Sample Number: <u>59-PW-15-0</u> Canister Number: <u>3001</u>	Readings (ppmv):. urated Backfill Ma Length Re Length Re 	Pre: 100 Maximum: Post: aterial: Soil Grout Bentonite Other: tracted: Sample Time: 1334 Sample Time: 1334 Evacuation Time: (Note: Two liters/minute or less) Purge Volume:
Leak Test PID Serial Number: Mini 2000 PID F Apparent Moisture: Dry Moist Sature Distance Probe Driven: NORMAL SAMPLE Sample Number: Sample Number: Sample Number: 3001 Begin/End Depths of Sample: Vacuum:	Readings (ppmv):. urated Backfill Ma Length Re Length Re 	Pre: 100 Maximum: Post: Pre: Dest: Other: Pre: Dest: Other: Other: Itracted: Sample Time: H334 Sample Time: Y334 Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Purge Volume: Yange Volume:
Leak Test PID Serial Number: Mini 2000 PID F Apparent Moisture: Distance Probe Driven: NORMAL SAMPLE Sample Number: Samp	Readings (ppmv):. urated Backfill Ma Length Re Length Re 	Pre: 100 Maximum: Post: aterial: Soil Grout Bentonite Other: tracted:

URS Downhole Soil Gas Sampli	ng Data Sheet	
Installation: <u>MATHR</u> Project:	Event: Baseline	
Boring Name:	Date: 11-2-17	
Location Description: Sutheast of buil	from MW Namber or Building Number and Comer)	
Arrival Time: Lithology at Sample Point:		
Departure Time: Sampler(s):	Weather Conditions: XNo (Rain in last 24 hours?) Yes	
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fa Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging:	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:	
Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Pneumatic Hydraulic (Direct Push) Well PID Serial Number: M. M. 2000 PID Readings (ppmv): Pre: 34 Maximum: Rost:		
NORMAL SAMPLE	Sample Time:355	
Sample Number: <u>59-PW-15-20-NS</u>		
Canister Number: N7598	Attempts to Sample:	
Begin/End Depths of Sample://	Evacuation Time:	
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg	
FIELD DUPLICATE Sample Number: NA	Sample Time:	
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg	
PID sample read = 660 ppm		

H:\Graphics\Data Mgmt\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.ind - VMG 04/16/15 SAC

URS Downhole Soil Gas Samp	ling Data Sheet
Installation: MATHR Project:	Event: Baselin-c
Boring Name:	Date: 11-2-17
Location Description: <u>Sigheast</u> of build	ce from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point: _	
Departure Time: Sampler(s):R	(Rain in last 24 trours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each sea and not lose more than 10% of the maximum pump vacuum. If the system Initial Vacuum Readin Above ground, complete sample train: After probe placement, before purging:	n fails the leak check procedure, check all fittings and re-test the system.) ng: Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hole Test PID Serial Number: Mini 2000 PID Readings (ppm Apparent-Moisture: Dry Moist Saturated Backfill Distance Probe Driven: Length	1): Pre: 32 Maximum:Post: Material:] Soil] Grout Bentonite] Other:
NORMAL SAMPLE	Sample Time:4(
Sample Number:	
Canister Number: $0 \phi \$ \phi \$$	Attempts to Sample:
Begin/End Depths of Sample:/	(Note: Two liters/minute or less)
Vacuum: (-) inch H	^g Purge Volume:
Initial Canister Vacuum: (-) inch H	g Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number:/ [A	Canister Number:
Initial Canister Vacuum: (-) inch H	g Final Canister Volume: (-) inch Hg
PID sample read = 360ppm	

H:\Graphics\Data MgmtMather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

URS Downhole Soil Gas Samplin	ng Data Sheet		
Installation: <u>MATHR</u> Project:	Event: Baseline		
Boring Name: 59-PW-15-60	Date: 11-2-17		
Location Description: Scilleast of build	for MW Number or Building Number and Comer)		
Arrival Time: Lithology at Sample Point:			
Departure Time: Sampler(s):JR TH	(Rain in last 24 hours?) Yes		
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train: ->>> After probe placement, before purging: PreWL = D-Y	Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:		
Sampling Method: Slide Hammer Hand Auger Hole Hand Drive Pneumatic Hydraulic (Direct Push) Well Veak Test Maximum: Post: Post:			
NORMAL SAMPLE	Sample Time: 1 4 2 3		
Sample Number:59-PW-15-60-NS			
Canister Number: 0 Ø486	Attempts to Sample:		
Begin/End Depths of Sample:/	Evacuation Time:		
Vacuum: (-) inch Hg Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg		
FIELD DUPLICATE	Sample Time:		
Sample Number: NVA	Canister Number:		
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg		
PID sample read = 700 ppm			

H:IGraphics/Data Mgmt/Mather/04-15-Mather-Downhole-Gas-Data-Sheet indd - VMG 04/16/15 SAC

UKS Downhole Soil Gas Sampli	<u>v</u>
Installation: Project:	Event: Baseline
Boring Name: 59-PW-15-80-450	Date: 11-2-17
Location Description:Southeast of bu	Indiang from MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):JR (7	Weather Conditions: No (Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fai Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging: Preul - Dry	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
PID Serial Number: <u>Mini 2000</u> PID Readings (ppmv): Apparent Moisture: Dry <u>Moist</u> Saturated Backfill Ma Distance Probe Driven: Length Re	aterial: 🔲 Soil 🔲 Grout 🗍 Bentonite 🔲 Other:
NORMAL SAMPLE	11127
CO PULIE VA ALC	Sample Time:437
Sample Number: <u>69-PW-15-80-NS</u>	
Canister Number: 3038	
	Attempts to Sample:
Canister Number: 3038	Attempts to Sample:
Canister Number: 3038 Begin/End Depths of Sample:/	Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Purge Volume:/
Canister Number: 3038 Begin/End Depths of Sample:/ Vacuum:(-) inch Hg	Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less) Purge Volume:/
Canister Number: 3038 Begin/End Depths of Sample:/ Vacuum:(-) inch Hg Initial Canister Vacuum:(-) inch Hg	Attempts to Sample:

8526

1.63

PID sample read = 40ppm

URS Downhole Soil Gas Sampli	ng bata oncot
Installation: <u>MATHR</u> Project: <u>550</u>	3B Event: Baseline
Boring Name:	Date: 11~(~(-)
Location Description: Near South Castern C (Direction and Distance	from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s):R/TH	(Rain in last 24 hours?) Ves
SAMPLE TRAIN LEAK CHECK Performed before each same and not lose more than 10% of the maximum pump vacuum. If the system fa Initial Vacuum Reading	ails the leak check procedure, check all fittings and re-test the system.)
Above ground, complete sample train:	
After probe placement, before purging: Pre WL - below top of	pump Post WL = 8.00
Apparent Moisture: Dry Dry Doist D Saturated Backfill Ma	aterial: 🔲 Soil 🔲 Grout 🔲 Bentonite 🔲 Other:
Distance Probe Driven: Length Re	etracted:
Distance Probe Driven: Length Re	Sample Time: <u>No Soup</u> le
Distance Probe Driven: Length Re NORMAL SAMPLE Sample Number:	Sample Time: No Sample N/A scenste below
Distance Probe Driven: Length Re NORMAL SAMPLE Sample Number:Canister Number:	Sample Time: <u>No Sample</u> NA see note below Attempts to Sample:
Distance Probe Driven: Length Re NORMAL SAMPLE Sample Number: Canister Number: Begin/End Depths of Sample:	Sample Time: <u>No Sample</u> N/A scenste below Attempts to Sample:
Distance Probe Driven: Length Re NORMAL SAMPLE Sample Number:	Sample Time: <u>No Sample</u> NA scenste below Attempts to Sample: Evacuation Time: (Note: Two liters/minute or less)
Distance Probe Driven: Length Res NORMAL SAMPLE Sample Number: Sample Number: Canister Number: Begin/End Depths of Sample: Vacuum: (-) inch Hg nitial Canister Vacuum:	etracted:
Apparent Moisture: Dry Moist Saturated Backfill Mathematical Backfill Mathematical Backfill Mathematical Backfill Mathematical Backfill Mathematical Backfill Sample Number: NORMAL SAMPLE Sample Number: Sample Number: Canister Number: Begin/End Depths of Sample: Vacuum: (-) inch Hg Initial Canister Vacuum: Sample Number:	etracted:

URS Downhole Soil Gas Sampli	ng Data Sheet
Installation: MATHR Project: 55°	B Event: Baseline
Boring Name:	Date: 11-1-17
Location Description: Near Gortheastern (Direction and Distance	from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s):R/TH	(Rain in last 24 hours?) Yes
After probe placement, Destriction OP	ils the leak check procedure, check all fittings and re-test the system.)
Sampling Method: Slide Hammer Hand Auger Hole Ha Very Test PID Serial Number: Mini 2000 PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Re	Pre: 40 Post: Post: aterial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time: 1426
Sample Number:	
Canister Number: 0 \$477	Attempts to Sample:
Begin/End Depths of Sample:/	Evacuation Time:
Vacuum: (-) inch Hg	Purge Volume:
Initial Canister Vacuum: 3 O (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number: NA	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

1226

25.88

PID Sample vapor = 3.0 ppm

URS Downhole Soil Gas	Sampli	ng Data Sheet
Installation: <u>MATHR</u> Project:	550	1B Event: Buseline
Boring Name: 59-PW-16-30		Date: 1-1-17
Location Description: <u>SE Corner of</u>	and Distance f	rom MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample	e Point:	Initial Vacuum Reading:
Departure Time: Sampler(s):	2/74	(Rain in last 24 hours?) Yes
and not lose more than 10% of the maximum pump vacuum. In Initial Vacuur Above ground, complete sample train:	f the system fai m Reading:	le. The system must hold vacuum for a minimum of one minute Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: ->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1 and Tank	ngs _{(ppmv}): Backfill Ma	
NORMAL SAMPLE		Sample Time: 1441
Sample Number: <u>59-PW-16-30</u>	-NS	
Canister Number:		Attempts to Sample:
Begin/End Depths of Sample: /		Evacuation Time:
d		Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	t	Sample Time:
Sample Number:N		Canister Number:
Initial Canister Vacuum:	_ (-) inch Hg	Final Canister Volume: (-) inch Hg
RIP sample = 2.3ppm		

H:\Graphics\Data Mgmt\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

3

Installation: MATHR Project:	Event: Baseline
Boring Name: 59-PW-16-60-	Date: 11-3-17
Location Description: <u>Southeast</u> Cerner (Direction and Distance for	
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):	(Rain in last 24 hours?) Ves
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train:	s the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: ーン
Sampling Method: Slide Hammer Hand Auger Hole Hand Auger	Pre: <u>87</u> Maximum: Post: terial: Soil Grout Bentonite Other:
Distance Probe Driven: Length Ref	
NORMAL SAMPLE	Sample Time: 0755
Sample Number: 59-PW-16-60	
Canister Number:N \$2-88	Attempts to Sample:
Begin/End Depths of Sample:/	(Note: Two liters/minute or less)
Vacuum: (-) inch Hg	Purge Volume: 1
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number: NA	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

H:\Graphics\Data Mgm(\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

PID Sample Read = 5:3 ppm

URS Downhole Soil Gas Sampli	ng Data Sheet
Installation: ATHR Project:	Event: Baseline
Boring Name:	Date: 11-3-17
Location Description:Southeast Corner (Direction and Distance	of building from MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	Initial Vacuum Reading:
Departure Time: Sampler(s):	(Rain in last 24 hours?) Ves
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fa Initial Vacuum Reading: Above ground, complete sample train: Above ground, complete sample train: -20 After probe placement, before purging: Preve 2 Dry	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling-Method: Slide Hammer Hand Auger Hole Ha Hand Auger Hole Hand Hand Auger H	Pre: <u>Soil</u> Grout Bentonite Other:
NORMAL SAMPLE	Sample Time: 0817
Sample Number: 59-PW-16-80-NS	
Canister Number:N3 Ø9 2	Attempts to Sample:
Begin/End Depths of Sample://	Evacuation Time:
Initial Canister Vacuum:9.5 (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number:/A	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
PID sample read = 1.8 ppm	

H:\Graphics\Data MgmtMather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

URS Downhole Soil Gas Sampl	ing Data Sheet
Installation: Project:	Event: Baseline
Boring Name: 59-PW-17-08	Date: 11-3-17
Location Description:	e from MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):	(Rain in last 24 hours?) Weather Conditions:
SAMPLE TRAIN LEAK CHECK Performed before each sam and not lose more than 10% of the maximum pump vacuum. If the system Initial Vacuum Reading Above ground, complete sample train: After probe placement, before purging: <u>Pre WL = Muddy</u>	fails the leak check procedure, check all fittings and re-test the system.) g: Final Vacuum Reading: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Sampling Method: Slide Hammer Hand Auger Hole Hand Auger Hole Hand Auger H	Hand Drive Pneumatic Hydraulic (Direct Push) Well : Pre: <u>}</u> <u>Maximum:</u> Post: Material: Soil Grout Bentonite Other:
Distance Probe Driven: Length R	etracted:
NORMAL SAMPLE	Sample Time: 093
Sample Number: 59-PW-17-08-NS	
Canister Number:N1980	Attempts to Sample:
Begin/End Depths of Sample://	(Note: Two liters/minute or less)
Initial Canister Vacuum:5 (-) inch Hg	
FIELD DUPLICATE	Sample Time:
Sample Number: NA	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
PID sample read = 80.0 ppm	1

H:\Graphics\Data Mgmt\Mathen\04-15-4Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

URS Downhole Soil Gas Sampli	ng Data Sheet
Installation: MATHR Project:	Event: Baseline
Boring Name: <u>59-PW-17-20</u>	Date: 11-3-17
Location Description: <u>hside hanger</u> (Direction and Distance t	rom MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):	(Rain in last 24 hours?) Ves
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fai Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging: PrewL = Dry	Is the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: ー みの、S
Sampling Method: Slide Hammer Hand Auger Hole Hand Auger H	Pre: <u>4</u> <u>A</u> <u>Maximum:</u> <u>Post:</u> terial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time: 0950
Sample Number: 59-PW-17-70-NS	
Canister Number:	Attempts to Sample:
Sample Number: $\underline{S9-(W-(1-f0-N))}$ Canister Number: $\underline{80}$ Begin/End Depths of Sample: $\underline{7}$ Vacuum: $\underline{-7}$ (-) inch Hg Initial Canister Vacuum: $\underline{-7}$ (-) inch Hg FIELD DUPLICATE Sample Number: $\underline{59-PW-P-70-FD}$ Initial Canister Vacuum: $\underline{-7}$ (-) inch Hg	Evacuation Time:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time: 0950
Sample Number: <u>59-PW-N-</u> 20- FD	Canister Number:
Initial Canister Vacuum:(-) inch Hg	Final Canister Volume: (-) inch Hg
PID sample read = 25 ppm	

UKS Downhole Soil Gas Sampli	ng Data Sneet
Installation: Project:	Event: Baseline
Boring Name: <u>59-PW-17-30</u>	Date: 11-3-17
Location Description: <u>Iniside hanger</u> (Direction and Distance)	from MW Number or Building Number and Comer)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each samp and not lose more than 10% of the maximum pump vacuum. If the system fai Initial Vacuum Reading: Above ground, complete sample train: After probe placement, before purging: PreWL-Dry	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: - 2-0
Sampling Method: Slide Hammer Hand Auger Hole Hand Auger Hand Au	Pre: <u>36</u> Maximum: Post: aterial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time: 1003
Sample Number: <u>59-PW-17-30-NS</u>	-
Canister Number: Û Ø S I Ø	Attempts to Sample:
Begin/End Depths of Sample://	Evacuation Time:
Vacuum: (-) inch Hg	Purge Volume:
Initial Canister Vacuum:29.5 (-) inch Hg	Final Canister Volume: (-) inch Hg
Canister Number: $0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Sample Time:
Sample Number: NA	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg

-

PID sample read = 10.0 ppm

Installation: MATHR Project:	Event: Baseline
Boring Name: 59-PW-17-60	Date: //-) - 17
Location Description: Inside Hangar	rom MW Number or Building Number and Corner)
Arrival Time: Lithology at Sample Point:	
Departure Time: Sampler(s):	(Rain in last 24 hours?) Yes
SAMPLE TRAIN LEAK CHECK Performed before each sample and not lose more than 10% of the maximum pump vacuum. If the system fail Initial Vacuum Reading: Above ground, complete sample train:	ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading:
Sampling Method: Slide Hammer Hand Auger Hole Hammer PID Serial Number: Min, 2000 PID Readings (ppmv): Apparent Moisture: Dry Moist Saturated Backfill Ma Distance Probe Driven: Length Ref	Pre: 38 Maximum: Post: aterial: Soil Grout Bentonite Other:
NORMAL SAMPLE	Sample Time: 12-35
Sample Number: 59-PW-(7-60-NS	
Canister Number: N265Ø	Attempts to Sample:
Begin/End Depths of Sample:7/	Evacuation Time: (Note: Two liters/minute or less) Purge Volume:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
FIELD DUPLICATE	Sample Time:
Sample Number: NA	Canister Number:
Initial Canister Vacuum: (-) inch Hg	Final Canister Volume: (-) inch Hg
PID Sample Read = 260ppm	

H:\Graphics\Data Mgmt\Mather\04-15-Mather-Downhole-Gas-Data-Sheet.indd - VMG 04/16/15 SAC

ויאלאיי

ng Data Sheet
59B Event: Baseline
Date: 11-3-17
from MW Number or Building Number and Corner)
Initial Vacuum Reading:
(Rain in last 24 hours?) Yes
le. The system must hold vacuum for a minimum of one minute ils the leak check procedure, check all fittings and re-test the system.) Final Vacuum Reading: ー
and Drive Pneumatic Hydraulic (Direct Push) Well Pre: <u>07</u> Maximum: <u>Post:</u> aterial: Soil Grout Bentonite Other:
Sample Time: 1028
Attempts to Sample:
Evacuation Time:
Purge Volume:
Final Canister Volume: (-) inch Hg
Sample Time:
Sample Time:

Maith	Flush Mount Well O of Wellhead a 3 Casing Vo Sub Disposable 1" lier: 0.04	Stove p Stove p Stove p P-ring? YE assembly: Dolumes mersible bailer Rechar Time: Depth 80% re	ipe S NO Excellent Bladde 2" 0.163 rge Measur to water: charge dep	Is well cap s Tab t Good Low Flow er Pump 4" 0.65	Da ealed? s Broken? d Fai Peris From 3	ate: YES N YES(# r Poor (E staltic Pump Pump tubing 6" 1.47 Purge Vol Calculated	O (explain in re /) NO Explain in remar Watera 8" 2.61	emarks) rks) a gal/ft.	
Mailer Type: aral condition of ple Type: ple Method: pled with: diameter: e Vol. Multiple i Measureme : h of well: h to water: harge (sec): Temp	Flush Mount Well O of Wellhead a 3 Casing Vo Sub Disposable 1" lier: 0.04	Stove p Stove p Stove p P-ring? YE assembly: Dolumes mersible bailer Rechar Time: Depth 80% re	ipe S NO Excellent Bladde 2" 0.163 rge Measur to water: charge dep	Is well cap s Tab t Good Low Flow er Pump 4" 0.65 rement	Da ealed? s Broken? d Fai Peris From 3	ate: YES N YES(# r Poor (E staltic Pump Pump tubing 6" 1.47 Purge Vol Calculated	O (explain in re /) NO ixplain in remar Watera 8" 2.61 ume d:	emarks) rks) a gal/ft.	
i/ ple Type: ple Method: pled with:l diameter: e Vol. Multiple i Measureme : h of well: h to water: harge (sec): Temp	Well O of Wellhead a 3 Casing Vo Sub Disposable 1" lier: 0.04 ent	P-ring? YE assembly: Dumes mersible bailer Bailer Time:_ Depth 80% re	S NO Excellent Bladde 2" 0.163 rge Measur to water: charge dep	Tab t Good Low Flow er Pump 4" 0.65 rement	s Broken? d Fai Peris From 3	YES(# r Poor (E staltic Pump Pump tubing 6" 1.47 Purge Vol Calculated	/) NO xplain in remar Watera 8" 2.61 ume d:	gal/ft.	
ple Method: pled with: I diameter: e Vol. Multip I Measureme : h of well: h to water: h to water: harge (sec):	Sub Disposable 1" lier: 0.04 ent	mersible bailer <u>Rechai</u> Time:_ Depth 80% re	Bladde 2" 0.163 rge Measur co water: charge dep	er Pump 4" 0.65 rement	Peris From 3	staltic Pump Pump tubing 6" 1.47 <u>Purge Vol</u> Calculated	8" 2.61 ume d:	gal/ft.	
ple Method: pled with: I diameter: e Vol. Multip I Measureme : h of well: h to water: h to water: harge (sec):	Sub Disposable 1" lier: 0.04 ent	mersible bailer <u>Rechai</u> Time:_ Depth 80% re	Bladde 2" 0.163 rge Measur co water: charge dep	er Pump 4" 0.65 rement	Peris From 3	staltic Pump Pump tubing 6" 1.47 <u>Purge Vol</u> Calculated	8" 2.61 ume d:	gal/ft.	
diameter: e Vol. Multip I <u>Measureme</u> : h of well: h to water: harge (sec): _ Temp	1" lier: 0.04 ent 	Rechar Time:_ Depth 80% re	2" 0.163 rge Measur ge Measur co water: charge dep	4" 0.65 rement	3	6" 1.47 <u>Purge Vol</u> Calculated	8" 2.61 ume d:		
diameter: e Vol. Multip I <u>Measureme</u> : h of well: h to water: harge (sec): _ Temp	1" lier: 0.04 ent 	Rechar Time:_ Depth 80% re	2" 0.163 rge Measur ge Measur co water: charge dep	4" 0.65 rement	3	6" 1.47 <u>Purge Vol</u> Calculated	8" 2.61 ume d:		
: h of well: h to water: harge (sec): _ e Temp		Time:_ Depth 80% re	to water: charge dep			Calculated	d:		
h of well: h to water: narge (sec): _ e Temp		Depth 1 80% re	to water: charge dep						
h to water: harge (sec):		80% re	charge dep						
narge (sec): _				oth:					
e Temp		F							
	E.C.		lecharge (s	sec):		Pressu	ıre (psi):		
	(µS)	рН	ORP	Turb (NTU)	DO	DTW (FT BTOC)	Flow Rate (LPM)	Vol. (Liters	
e Chla	orine ((Imin)	1.0	mg/L					
al Ch	lorine	(3min)	= 1.1 r	ng/L					
Note pump set atfeet. Actual purge volume:									
QC samples collected? YES NO QC sample ID:Time: Remarks: KT took samples									
ture:				Revi	ew:				
	pump set at pump set at ple appearan amples colle arks: T	pump set atf pump set atf ple appearance: amples collected? YEs arks: Tture: ture: ture:	pump set atfeet. pump set atfe	pump set atfeet. plane pump set atfeet. plane plane pump set atfeet. plane plane pump set atfeet. plane plane pump set atfeet. plane pump set atfeet. plane plan	Image: state in the state	u u u <td>pump set atfeet. pump set atfeet. Actual purge volum pump set at</td> <td>Image: second second</td>	pump set atfeet. pump set atfeet. Actual purge volum pump set at	Image: second	

MONITORING WELL SAMPLING DATA SHEET	AECOM
Client: VSAF Project No:Well Designation	59-PW-13A-()
	2-17 JR/TH
Bolts: 2 / 2 Well O-ring? YES NO Tabs Broken? YES(#_	NO (explain in remarks) /) NO r (Explain in remarks)
Sample Type: 3 Casing Volumes Low Flow	
Sample Method: Submersible Bladder Pump Peristaltic Pum	np Watera
	bing
Well diameter: 1" 2" 4" 6" Purge Vol. Multiplier: 0.04 0.163 0.653 1.47	8" 2.61 gal/ft.
	Volume ated: <u> </u>
Depth to water: <u>1,5</u> 80% recharge depth:	
Discharge (sec): Pre	ssure (psi):
Time Temp E.C. pH ORP Turb DO DTW (C) (µS) pH ORP (NTU) DO (FT BTO)	
0810 Start 0812 20.3 408 6.94 0817 21.6 366 7.09 0821 21.2 367 7.31 0822 22.0 365 7.37	
0824 Sample	
0828 Free Chlorine = 0.0 0831 Toola Chlorine = 0.0	
0838 8.45	-
Note pump set at <u>9,75</u> feet. Actual purge vo	plume: gal
Sample appearance: <u>CA-ese</u> QC samples collected? YES NO QC sample ID:	Time:
Remarks: projed water intil 0930 for vapor sample W	
Signature:Review:	
Flow rate: 0.1 – 0.5 L/min	

Flow rate: 0.1 – 0.5 L/min Drawdown: <25% of well screen interval pH: ±0.1 pH units Conductivity: ±3% of reading Dissolved Oxygen: $\pm 10\%$ of reading or 0.2 mg/L, whichever is greater ORP: $\pm 10mV$ Turbidity: $\pm 10\%$ of prior reading or ± 1.0 NTU, whichever is greater Temperature: $\pm 1^\circ C$

	MONITORING WELL SAMPLING DATA SHEET									СОМ		
	Client: USAF Project No: 60520471 Well Designation: 59-								591-14-:	3D		
	Site: Macher SSQB Date: 11-1-17								7 3R	YTH	-	
	Well Type: Flush Mount Stove pipe Is well cap sealed? ES NO (explain in remarks) Bolts: J J Well O-ring? YES NO Tabs Broken? YES(#/) NO General condition of Wellhead assembly: Excellent Good Fair Poor (Explain in remarks)									-		
	Sample	Sample Type: 3 Casing Volumes Low Flow										
		Sample Method: Submersible Bladder Pump Peristaltic Pump Watera										
		a with: L)isposable b					Pump tubing			_	
		/ol. Multipli			2" 0.163	4" 0.65	3	6" 1.47	8" 2.61	gal/ft.		
		easureme			ge Measu			Purge Vol	ume			
									0.57			
	•	of well: <u>5</u>	1.02			epth:		Actual:				
22	Dischar	ge (sec): _						Pressure (psi):			-	
N + MA	Time	Temp (C)	Ε.C. (μS)	рН	ORP	Turb (NTU)	DO	DTW (FT BTOC)	Flow Rate (LPM)	Vol. - (Liters)	al	
1	0903					(110)		27.43			0	
	0908	20.5	575	6.84				29.02		0.25	1	
	0918	21.1	566	6.89				Below top		0,5		
	naul	6	à	n							-	
	0924	Jan	ple pe	v Kin	iye						-	
	0934	Free	chlar	ine (In	nin)	0.0 ma	11				-	
	0939	Tote	al 11	(3)	min)	O, O mg	<u> </u> L					
	1111	WLO	30.25	-							-	
		Note pump set at <u>31.5</u> feet. Actual purge volume: <u>4</u> ,										
	•	Sample appearance: Clear QC samples collected? YES NO QC sample ID:										
	Remark	Remarks: WL @ 30,15 @ 1459									•	
	Signatur	e:				Rev	iew:					
	Drawdown pH: ±0.1 p		Il screen inter	val	0	RP: ±10mV		f reading or 0.2 in ading or ± 1.0 NT		-		

Conductivity: ±3% of reading

Temperature: ±1°C

	MONITORING WELL SAMPLING DATA SHEET	AECOM							
	Client: USAF Project No: 60520471 Well Designation: 59-1	PW-14-60							
	Site: Mecher 359BDate: 11-1-17								
	Well Type: Flush Mount Stove pipe Is well cap sealed? ES NO (expl Bolts: 2 2 Well O-ring? YES NO Tabs Broken? YES(#) General condition of Wellhead assembly: Excellent Good Fair Poor (Explain in	NO							
	Sample Type: 3 Casing Volumes Low Flow								
		Watera							
	Sampled with: Disposable bailer From Pump tubing								
		8" 2.61 gal/ft.							
	Initial Measurement Recharge Measurement Purge Volume								
	Time: Calculated: Ø Depth of well: 0 0 0								
	Depth of well: Image: Control of the sector of								
621	Time Temp E.C. pH ORP Turb DO DTW Flow (C) (µS) PH ORP (NTU) DO (FT BTOC) (LF								
4.7 ×.04 ×.3 2/5/7		0.10-0.15							
2 X V	Not enough water to Collect perameters a	or all vorg							
	1105 Sampled one VOA								
	No chlorine								
-									
	Note pump set at <u>lolo</u> feet. Actual purge volume:								
	Sample appearance: Clear QC samples collected? YES NO QC sample ID:								
	QC samples collected? YES (NO) QC sample ID: Time: Remarks;								
	WL@ 57,30 @ 1500								
	Signature: Review:								
	Flow rate: $0.1 - 0.5$ L/minDissolved Oxygen: $\pm 10\%$ of reading or 0.2 mg/L, whDrawdown: <25% of well screen interval pH: ± 0.1 pH unitsORP: $\pm 10mV$ Turbidity: $\pm 10\%$ of prior reading or ± 1.0 NTU, which Temperature: $\pm 1^{\circ}C$								

MONITORING WELL SA	AMPLING	DATA S	SHEET			A	CO/
Client: USAF Proj	ect No:	0520-	171	Well De	esignation:	591-921-15	5-08
Client: USAF Proj	15-01	> Mas	the SE	<u>59B</u> Da	ate: <u> - </u>	-17 2	e/TI
Well Type: Flush Mount Bolts: / Well O- General condition of Wellhead as	ring? YE	S NO	Tab	s Broken?	YES(#	/) NO	
Sample Type: 3 Casing Vo	lumes		Low Flow				
					staltic Pump		
Sampled with: Disposable &							
Well diameter: 1" Purge Vol. Multiplier: 0.04		2" 0.163	4" 0.65	53	6" 1.47	8" 2.61	
Initial Measurement	Rechar	ge Measur	ement		Purge Vol	ume	•
Time:						d:	
Depth of well:		o water:					
Depth to water:	80% red	charge dep	oth:				
Discharge (sec):	_ R	echarge (s	ec):	·	Pressu	ıre (psi):	
Time Temp E.C. (C) (µS)	рН	ORP	Turb (NTU)	DO	DTW (FT BTOC)	Flow Rate	Vol
NA see no	1e		(110)			(LPM)	(Liter:
				· · · · · · · · · · · · · · · · · · ·			
Note pump set atfe	eet.		······	Actua	l purge volun	ne:	
Sample appearance:							
QC samples collected? YES	NO	QC sam	ple ID:		-	Гіте:	
Remarks: 0.37 Water (a)	umn	nos	ampla	e ne	eded		
Signature:			Rev	iew:			

Flow rate: 0.1 - 0.5 L/minDrawdown: <25% of well screen interval pH: ±0.1 pH units Conductivity: ±3% of reading

DUE

Dissolved Oxygen: $\pm 10\%$ of reading or 0.2 mg/L, whichever is greater ORP: $\pm 10mV$ Turbidity: $\pm 10\%$ of prior reading or ± 1.0 NTU, whichever is greater Temperature: $\pm 1^{\circ}C$

MONITORING WELL SAM	IPLING DATA	SHEET			A	СОМ	
Client: <u>VSAT</u> Projec	t No: 60520	471	Well De	esignation.	59-PW-1	6-08	
Client: <u>VSAF</u> Projec Site: <u>Macher</u>			D	ate: <u> - -</u>	-17 1	RITH	£
Well Type: Flush Mount Bolts: 2 Well O-rin General condition of Wellhead asset	g? YES NO	ls well cap so Tabs	s Broken?	9 YES(#	O (explain in r /) NC		_
Sample Type: 3 Casing Volur	nes	Low Flow					-
Sample Method: Subme	rsible Bladder	r Pump	Peri	staltic Pump	Water	а	
Sampled with: Disposable bai				Pump tubing			
Well diameter: 1" Purge Vol. Multiplier: 0.04	2" 0.163	4" 0.653	3	6" 1.47	8" 2.61	gal/ft.	-
Initial Measurement Time:	Recharge Measur			<u>Purge Vol</u> Calculated	<u>ume</u> d:0.2\$		
Depth of well: 9,66	Depth to water:						
Depth to water: 7.30	80% recharge dep	oth:					
Discharge (sec):	Recharge (s	ec):		Pressu	ıre (psi):		-
Time Temp E.C. (C) (µS)	pH ORP	Turb (NTU)	DO	DTW (FT BTOC)	Flow Rate (LPM)	Vol. (Liters)	ga
1305 Start				Below			
	1.11			punp			-
	1.50					more	
	7,51					0.25	
1311 Sample							
1312 Chlorine Fre	2e=0.0						
1315 Childrine Tot							
					of the second se		
Note pump set at <u>9.5</u> feet.			Actua	l purge volun	ne:		
Sample appearance: <u>CL-co</u> QC samples collected? YES (\bigcirc			_			
Remarks:	NO [*] QC sam	pie ID:			Гіте:		
inemarks.							
Signature:		Revie	ew:				
Flow rate: 0.1 – 0.5 L/min Drawdown: <25% of well screen interval pH: ±0.1 pH units Conductivity: ±3% of reading	ORI	P: ±10mV	of prior rea		mg/L, whichever	-	

WC=2.36 0,38gal

	MONITORING WELL	SAMPLING	G DATA	SHEET			A	СОМ	
	Client: USAF	Project No:			Well De	esignation:	59-ph	1-17-60	
	Site: Masther 5	SAB			Da	ate: <u>[[-</u>]	-17	JR/TI-	
	Well Type: Flush Mo Bolts: 27 2 We General condition of Wellhes	II O-ring? YE			os Broken?	YES(#	IO (explain in r /) NO	Ď	
	Sample Type: 3 Casing	Volumes		Low Flow				-	
	Sample Method: S	Submersible	Bladde	r Pump	Peris	staltic Pump	Water	а	
	Sampled with: Disposal				From	Pump tubing			
		.04	2" 0.163	4" 0.6	53	6" 1.47	8" 2.61	gal/ft.	
	Initial Measurement	Rechar	ge Measu	ement		Purge Vo	lume		
	Time:	_ Time:_				Calculate	d: 0.15		
	Depth of well: 61,60		o water:			Actual:			
	Depth to water: 60.33	the contract of the contract o	charge dep	oth:					
6	Discharge (sec):	R	echarge (s	sec):		Pressu	ure (psi):		
ナキレ	Time Temp E.C. (C) (μS)	рН	ORP	Turb (NTU)	DO	DTW (FT BTOC)	Flow Rate (LPM)	Vol. (Liters)	
JC- (.) ×00 ×3	1131 Start -					Below			
1, ××	1152 18.2 550			serve when it is not serve the server the description of the server the serve		pump			
2	1158 18.3 53	17.07							
<u> </u>	1205 18.4 52	5 7.15							
	1209 18.7 52'	5 7.12			NY YARAFARANA SA				
	1211 Sample	- 00/0) (())	٨			
	to il Sample	+ only No			2 vo	45			
	WLQ60	0.62	eno	gh we	ster				
	Note pump set at 61.5				Actual	l purge volun	ne:		
	Note pump set at r.s_feet. Actual purge volume: Sample appearance:								
	QC samples collected?	ES NO	QC sam	ple ID:			Time:	2	
	Remarks:								
	Signature:			Rev	iew:				
	Flow rate: 0.1 – 0.5 L/min		Dis	solved Oxyge	n: ±10% of	reading or 0.2	mg/L, whichever	is greater	
	Drawdown: <25% of well screen i pH: ± 0.1 pH units Conductivity: $\pm 3\%$ of reading	nterval	OR Tur	P: ±10mV	o of prior rea		rU, whichever is	-	

Waste Disposal Receipts

PCKUPMANIFESTEachS GAL BUCKETSEachS GAL BUCKETSEachS ManifestMGEAR TRUCK2' VAC HOSEEachABS. (Kity Liter)EachEachS ManifestMMMSTON STAKE BED3' VAC HOSEEachABSOR PADSBDLEachBDLCancenceMMM<			Daily	Tran	spor	tation & Dispo	sal	Time	Ticke	et				
PONDER INVIRONMENTAL SERVICES, INC. P.O. Box 1427, Banicia, CA 34510 / 107/48-7775 (0816a) / 107/48-7775 (Fax) Prevailing Wage: Yes. J T USTOMER: STE ADDRESS: JOB NO: TH. BOST 15/11/11/11/11/11/11/11/11/11/11/11/11/1			1						WOR	CORDER -	D #:	C	1896	38
GUSTOMER: STITE ADDRESS: JOB NO: DATE:: JOB NO: DAY: Month Tue. (Wed.) Thur. 1 Fri. S at. S an. CONTACT: Mathematical Attrast DAY: Month Tue. (Wed.) Thur. 1 Fri. S at. S an. JOB DESCRIPTION: PHONE #: DAY: Month DAY: Month ApproxII: Current Provider SERVICE PROFESSIONALS - LAST / FIRST MARE OLASS START / END TIME OUT / IN TIME OUT / IN TIME OUT / IN START / END TIME OUT / IN START / END TIME OUT / IN START / END DESCRIPTION EQUIP / TILL # DESCRIPTION QTY HRS DASD QAD	PO . E			<u>3 N M</u> 748-77	ENTA 75 (Offic	AL SERVICES, e) / 707-748-7776 (Fax)	INC	<u>.</u>		Prevaili 620 7515 (0	ng Wag 6 (Vacu General	e: Yes um Tru Mainte	s / N Icks) enance)	
DAY: Mon. I Tue. I Wed./ Thur. I Fil. Sat. Sat. CONTACT: PHONE #: CUSTOMER P.O.: CUSTOMER P.O.: CUSTOMER P.O.: CUSTOMER P.O.: CUSTOMER P.O.: JOB DESCRIPTION: PHONE #: CUSTOMER P.O.: CUSTOMER P.O.: CUSTOMER P.O.: CUSTOMER P.O.: SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN TIM EAL 2nd MEAL SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN ST OT SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN ST OT SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN ST OT SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN ST OT SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN ST OT SERVICE PROFESSIONALS - LAST / FROT NAME CLASS START / END TIME OUT / IN ST OT	CUSTOMER:		SITE ADDRESS:					Tom	Ger		1	1 .	4	
CONTACT: CUISTOMER CUISTOMER CUISTOMER CUISTOMER JOB DESCRIPTION: COMMENTS: To Department PARED PARED </th <th>MR</th> <th>2000</th> <th>Malle</th> <th>. ^</th> <th>ER</th> <th>DAY: Mon. / T</th> <th>ue. /</th> <th>Wed.</th> <th>)/ Thur.</th> <th></th> <th>15 Sat. /</th> <th>Sun</th> <th>+</th> <th></th>	MR	2000	Malle	. ^	ER	DAY: Mon. / T	ue. /	Wed.)/ Thur.		15 Sat. /	Sun	+	
JOB DESCRIPTION: IAPPROVAL: IAPPROVAL: <thiapproval:< th=""> IAPPROVAL: IAP</thiapproval:<>	CONTACT:	Dig	MIGTNEL	-p-			-				X			0
SERVICE PROFESSIONALE - LAST / FIRST NAME CLASS START / END TIME OUT / IN TIME OUT / IN ST OT UNIT DESCRIPTION DV DSSD	JOB DESCRIPTI	oN:			-		óf	208	AL	Par	he	e o	Tr	2 11
SERVICE PROFESSIONALS - LAST / PROT NAME CLASS START / END TIME OUT / IN TIME OUT / IN STA OT UNIT DESCRIPTION DV DSO DOO DOO DO <		IDE	C +		~	0	30)12	<u></u>		Ward Group and Grow			
SERVICE PROFESSIONALS - LAST / FIRST NAME CLASS START / FIND TIME OUT / IN TIME OUT / IN STA OT UNIT OF CONTRACTORS DIF DESCRIPTION DIF DESCRIPTION DIF	Rol	100	Rait	211			_	1st MI	= 01	and MEA		1		
EQUIPMENT SUPPLIES DESCRIPTION EQUIP / TR.# DESCRIPTION QTV HRS / UM DESCRIPTION QTV DESCRIPTION	SERVICE I	PROFESSIONALS -	LAST / FIRST NAME		CLASS	START / END					-	S/T	0/T	P/T
DESCRIPTION EQUIP / TRL # DESCRIPTION QTY HRS / UM DESCRIPTION QTY HRS / UM DESCRIPTION QTY HRS / UM PICKUP MANIFEST Each S GAL BUCKETS Each Each Ass. (Kity Utin) Each Each Ass. (Kity Utin) Each Each Ass. (Kity Utin) Each Boll Control Contro Sold Contro		'atir	in Melic	in	Dur	D530-	ex	700.	0930					
Image: Control of the state of the	DESCRIPTION			ΟΤΧ	HRS /	DESCRIPTION		HRS /						
GEAR TRUCK 2*WAC HOSE Each Disk bold (Wighter) Each Addit Image: Strain (Strain (QIT			QIY	UM		DESCRIPTION		QTY	HRS	UM
STON STAKE BED 9' VAC HOSE Each ABSOR. PADS BDL Indexted State In			-	t			1	-	-					2
DBL VAC GAS MTR (4 GAS) Daily RESPIRATOR Daily Including Including <thincluding< th=""> In</thincluding<>	5 TON STAKE BED	-	3" VAC HOSE		Each									
120 BBL VAC BENZENE METER Daily CARTRIDGES (DF) Daily Cartridges (OV) Set Inclusion				-	Each	ABSOR. BOOM		Each				A to a		
VACTOR GAS MTR (FID) Daily CARTRIDES (OV) Set Inclusion In				1				Daily						
HYDRO EX. HARNESS Daily DEGREASER JPX Gailons Image: Solution of the solutis of the solutis of the solutis of the solution of the							-					-		14
BOOM TRUCK CONTAINMENT (25 ft) Daily DRUM LINERS Each Index Index <thindex< th=""> <th< td=""><td>and the second se</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></th<></thindex<>	and the second se									-				
LOW BOY 55 GAL DM PLY CT Each GLOVES (CUT) Pair Pair International (Content of the content	the second s		CONTAINMENT (25 ft)											1
ROLL OFF (S / D) 55 GAL DRM PLY OT Each GLOVES (Leather) Pair Pair Control Image: Control of Control					Daily	DUCT TAPE		Each						
BIN LINER 55 GAL DRM STL CT Each GLOVES (Impact) Pair Pair Added to the state of the sta		170/2111							-		1			
8 YRD BIN 55 GAL DRM STL OT Each GLOVES (PVC) Pair MISCELLANEOUS: 0		100/079			a state of the									
A0 YRD BIN CUBIC YARD BOX Each RAIN SUITS (FRC) Each BRIDGE TOLL (2 AXLE) Image: Comparison of the comparis														
TANK 8.5 Image: Second sec					Each	RAGS		LBS / BDL		the second second second second second				
Image: Strain of the strain			CUBIC YARD BOX	-	Each									
Image: Section of the section of th	C.0 ANN						-				-			
Image: Section of the sectio					1335			-						
Image: Second									-					
Image: Contraction of the second s								Roll					Gallo	ns
		17.98				VISQUEEN (10 ML)		Roll	FUEL (GASOL	NE)			Gallo	ns
P.U. # MANIFEST # / BOL #	VENE	IOP I	the second s		TRACTO									
	VENL		P.O.	H		MANIFEST # / BO	L #							
WHITE - OFFICE COPY Ref. No: G 613412755 PINK - CUSTOMER COP	WHITE OFFICE OF						_							1994

	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number CAS570024143	2. Page 1 of 3. En	nergency Response Phone (977) 256-6265		Tracking Numb 17-16	er 1025-0	01	
	5. Generator's Name and Mailin AFCEC/CIBW	g Address		rator's Site Address (if differe		lress)			
	3411 Olson St McClellan, CA 9	5652		ther, CA 95655					
	Generator's Phone: 6. Transporter 1 Company Nam	(916) 643-	1250		U.S. EPA ID) Number			
	Ponder Environ	mental Services Inc					0018073	7	
					U.S. EPA ID) Number			
	8. Designated Facility Name an				U.S. EPA ID) Number			
	3675 Potrero Hil Sulsun City, CA	94 585	a al in wy			da, a mai tao a			š
	Facility's Phone:	(707) 432-	-4027	10. Containers	11. Total	12. Unit	0008946	16	
	9. Waste Shipping Name	and Description		No. Туре	Quantity	Wt./Vol.			
GENERATOR	Nor-Hazarde	us waste, solid (drill outtings)		001 CM	15	Y			
GEN	2.								
	3.								
	4.			· · · · · ·					
	13. Special Handling Instructions	s and Additional Information					р 		
	Profile #PHLF-1		¥1711						
	PO #737242 Job #17-16025	Truck #	4 <u>223</u> 24	6					
	14. GENERATOR'S/OFFEROR'	S CERTIFICATION: I hereby declare that the contents	of this consignment are fully	and accurately described abo	we by the proper sh	nipping name, ar	nd are classifie	ed, packa	ged,
	Generator's/Offeror's Printed/Typ		ort according to applicable int Signature				Month	Day	Year
V 	Joe Anderson (or 15. International Shipments	behalf of Generator)		/	1 Ver	alanta (alanta) (alanta) (alanta)	02	15	1.7
INT'L	Transporter Signature (for export		Export from U.S.	Port of entry/exit: Date leaving U.S.:					
RTEF	16. Transporter Acknowledgmen Transporter 1 Printed/Typed Nam		Signature				Month	Day	Year
TRANSPORTER	Transporter 2 Printed/Typed Nan	ne	Signature	per			Month	Day	Year
TRA							Monut	Day	i
↑ ⊦	 17. Discrepancy 17a. Discrepancy Indication Space 	Ce Quantity Typ	[1	
l				Residue	Partial Rej	ection	LJ F	ull Rejec	tion
È	17b. Alternate Facility (or Genera	tor)	Ma	nifest Reference Number:	U.S. EPA ID	Number			
FACIL	Facility's Phone:				1				
ATED	17c. Signature of Alternate Facilit	y (or Generator)		1		é.	Month	Day	Year Yyear Yyear Yyy Yyy
DESIGNATED FACILITY									
5 									
		Operator: Certification of receipt of materials covered b		d in Item 17a					
	Printed/Typed Name		Signature				Month	Day	Year
-								-	- N. C.

3

NON-HAZARDOUS	1. Generator ID Number		3. Emergency Response		4. Waste	Tracking Nu	Imber
WASTE MANIFEST	CA8570024143	1	(877) 250		has melline t		6025-0
5. Generator's Name and Ma AFCEC/CIBW	ning Address		Generator's Site Addre 10360 Macre			uress)	
3411 Olson St			Mather, CA 9				
McClellan, CA Generator's Phone:	(918) 643-		2				
6. Transporter 1 Company N	ame				U.S. EPA I		
7. Transporter 2 Company N	nmental Services Inc				U.S. EPA II		200018073
Company N	anı ç .				0.3. EFAT		
8. Designated Facility Name Potrero Hills La	and Site Address				U.S. EPA II	D Number	
3675 Potrero H	Hills Ln						
Suisun City, C.	A 94585 (707) 432	-4827			1	CAR	20000894
9. Waste Shipping Na		-VEI -	10. Con	tainers	11. Total	12. Unit	
	ame and Description		No.	Туре	Quantity	Wt./Vol.	
1.					45	v	1.
Non-Hazar	dous waste, solid (drill outtings)		001	СМ	15	Y	
Non-Hazar				+			10000000
í							
3.							
J.			8				
4.							han ei
Profile #PHLF PO #737242		#1711	()]_				
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac	5 Truck ROR'S CERTIFICATION: I hereby declare that the content carded, and are in all respects in proper condition for trans	#120/27	e fully and accurately de able international and na	escribed above	by the proper s ental regulatior	hipping name	
PO #737242 Job #17-1802 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printer	5 Truck ROR'S CERTIFICATION: I hereby declare that the content arded, and are in all respects in proper condition for trans d/Typed Name	#120/27	e fully and accurately de able international and na nature	itional governme	ental regulation	shipping name IS.	Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson	5 Truck ROR'S CERTIFICATION: I hereby declare that the content carded, and are in all respects in proper condition for trans d/Typed Name (on behalf of Generator)	#120/27 is of this consignment ar port according to applice Sign	e fully and accurately de able international and na hature	ational governme	ental regulation	hipping name Is.	
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printer Joe Anderson 15. International Shipments Transporter Signature (for e	5 Truck: ROR'S CERTIFICATION: I hereby declare that the content arded, and are in all respects in proper condition for trans d/Typed Name (on behalf of Generator) Import to U.S. xports only):	#120/27	e fully and accurately de able international and na nature	itional governme	ental regulation	hipping name Is.	Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plax Generator's/Offeror's Printer Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg	5 Truck: ROR'S CERTIFICATION: I hereby declare that the content arded, and are in all respects in proper condition for trans d/Typed Name (on behalf of Generator) Import to U.S. xports only): ment of Receipt of Meterials	#120/20 is of this consignment arr port according to applice Sign	e fully and accurately de able international and na nature 	ational governme ational gove	ental regulation	hipping name Is.	Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plax Generator's/Offeror's Printer Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg	5 Truck: ROR'S CERTIFICATION: I hereby declare that the content arded, and are in all respects in proper condition for trans d/Typed Name (on behalf of Generator) Import to U.S. xports only): ment of Receipt of Meterials	#120/20 is of this consignment arr port according to applice Sign	e fully and accurately de able international and na nature	ational governme ational gove	ental regulation	hipping name Is.	Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plax Generator's/Offeror's Printer Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg	5 Truck: ADR'S CERTIFICATION: I hereby declare that the content carded, and are in all respects in proper condition for trans d/Typed Name (on behalf of Generator) Import to U.S. xports only): ment of Receipt of Meterials Name Mumber of Meterials	#120/27 is of this consignment ar port according to applice Sign Export from U	e fully and accurately de able international and na nature 	ational governme ational gove	ental regulation	hipping name Is.	Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledge Transporter Acknowledge Transporter 2 Printed/Typeo	5 Truck: ADR'S CERTIFICATION: I hereby declare that the content carded, and are in all respects in proper condition for trans d/Typed Name (on behalf of Generator) Import to U.S. xports only): ment of Receipt of Meterials Name Mumber of Meterials	#120/27 is of this consignment ar port according to applice Sign Export from U	e fully and accurately de able international and na nature 	ational governme ational gove	ental regulation	hipping name Is.	Month 03 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plax Generator's/Offeror's Printer Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg	5 Truck:	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S. Port of e Date lea nature	ational governme ational gove			Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEE marked and labeled/play Generator'S/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed Typed Transporter 2 Printed Typed 17. Discrepancy	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature 	ational governme ational gove	ental regulation		Month 03 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed/Typec Transporter 2 Printed/Typec 17. Discrepancy 17a. Discrepancy Indication	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S. Port of e Date lea nature	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed/Typed Transporter 2 Printed/Typed 17. Discrepancy 17a. Discrepancy Indication	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S Port of e Date lea nature Residue	antry/exit:		Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed/Typed Transporter 2 Printed/Typed 17. Discrepancy 17a. Discrepancy Indication	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S Port of e Date lea nature Residue	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/place Generator's/Offeor's Printer Joe Anderson 1 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter Acknowledg Transporter 2 Philed/Typeo Transporter 2 Philed/Typeo 17. Discrepancy 17a. Discrepancy Indication 17b. Alternate Facility (or Generative Science) Facility's Phone:	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S Port of e Date lea nature Residue	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/play Generator's/Offeror's Printer Joe Anderson 1 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter Acknowledg Transporter 2 Printed/Typec Transporter 2 Printed/Typec 17. Discrepancy 17a. Discrepancy Indication 17b. Alternate Facility (or Generation of the facility's Phone:	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S Port of e Date lea nature Residue	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/play Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed/Typed Transporter 2 Printed/Typed Transporter 2 Printed/Typed 17. Discrepancy 17a. Discrepancy Indication 17b. Alternate Facility (or Generation Facility's Phone:	5 Truck	#120/07 Is of this consignment ar port according to applica Sign Export from U Sign Sign Sign	e fully and accurately de able international and na nature S Port of e Date lea nature Residue	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed/Typed Transporter 2 Printed/Typed 17. Discrepancy 17a. Discrepancy 17b. Alternate Facility (or Generation 17b. Alternate Facility (or Generation 17b. Alternate Facility (or Generation 17c. Signature of Alternate Facility S Phone:	5 Truck:	#120/07	e fully and accurately de able international and na nature Port of e Date lea nature Residue Manifest Reference	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month
PO #737242 Job #17-1602 14. GENERATOR'S/OFFEF marked and labeled/plac Generator's/Offeror's Printe Joe Anderson 15. International Shipments Transporter Signature (for e 16. Transporter Acknowledg Transporter 2 Printed/Typed Transporter 2 Printed/Typed 17. Discrepancy 17a. Discrepancy 17b. Alternate Facility (or Generative Facility's Phone: 17c. Signature of Alternate Facility	5 Truck	#120/20	e fully and accurately de able international and na nature Port of e Date lea nature Residue Manifest Reference	antry/exit:	Partial R	Rejection	Month 03 Month 123 Month

APPENDIX C

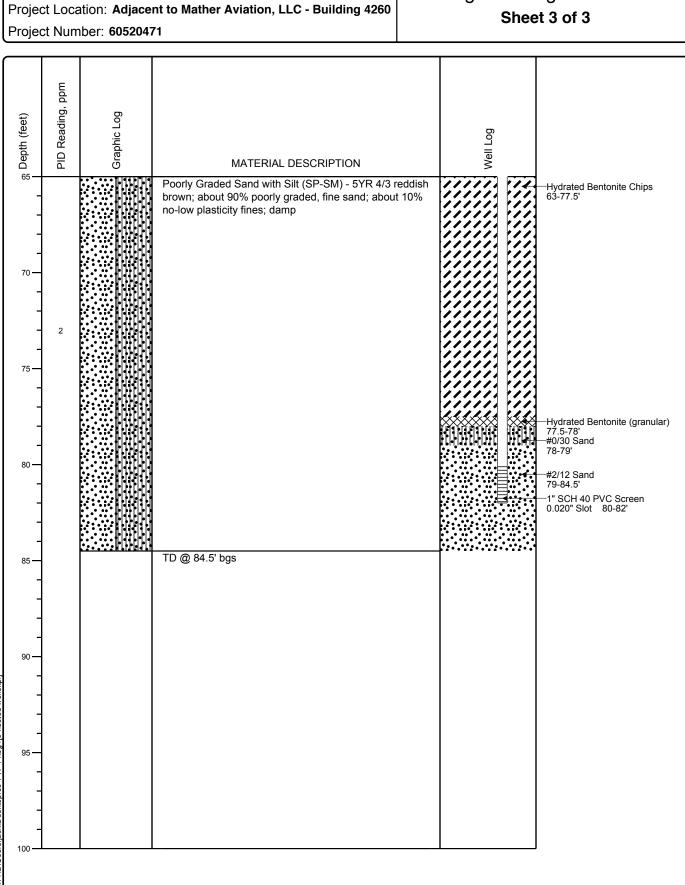
Lithologic and Well Construction Logs

59-PW-14 59-PW-15 59-PW-16 59-PW-17 59-SS-01 59-SS-02 59-SS-03 59-SS-04

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

Project Number: 60520471

Log of Boring 59-PW-14 Sheet 1 of 3


illed	2/1/17-2	2/2/17		Logged By Jack Rayl		Checke	d By Do	n Bransford
illing ethod	Sonic			Drill Bit Size/Type 12" Core		Total D of Bore	epth hole 84.	5'
ill Rig pe	FE6S5	6		Drilling Contractor Gregg Drilling & Testing, Ir	IC.		Elevatio	n
	water Lev e Measur			Sampling Method(s) N/A		Hamme Data	^{er} N/A	
rehole ckfill	^e See W	Vell Log		Location Approximately 25' Southeas	t of Buil	ding 42	60	
ຸ Depth (feet) ໄ	PID Reading, ppm	Graphic Log		MATERIAL DESCRIPTION		Well Log		—Flush-Mounted
	0.0		about 75% fine 10% fine-coars Lean Clay (CL) medium-high p about 10% fine Silty Sand with dark brown; ab 20% fine-coars fines; dry-dam staining from 6 Lean Clay (CL) low-medium pla moist Silty Sand with dark brown; ab fine-coarse, rou fines; dry-dam diminsion of 6" Sandy Lean Cl 3/3 dark brown	Gravel (SM) - 7.5YR 3/3 dark brown; -medium sand; about 15% fines; about se gravel; moist) - 7.5YR 3/3 dark brown; about 90% lasticity, hard fines, slow-no dilatency; e sand; moist Gravel and Cobbles (SM) - 7.5YR 3/4 out 65% poorly graded, fine sand; about se gravel; about 15% no-low plasticity p, maximum cobble dimension 3.5"; gray '-7.5') - 7.5YR 3/3 dark brown; about 95% asticity, soft fines; about 5% fine sand; Gravel and Cobbles (SM) - 7.5YR 3/3 out 50% fine sand; about 5% fine sand; Gravel and Cobbles (SM) - 7.5YR 3/3 out 50% fine sand; about 30% unded gravel; about 20% non-plastic p; rounded cobbles with maximum ay with Gravel and Cobbles (CL) - 7.5YF				 -Tusti-Monited Traffic - Rated Well Vault 0-0.5' -Cement Grout 0.5-3' -Hydrated Bentonite (chips) 3-27.5' -1" SCH 40 PVC Blank 0-30'
- - 25 	3.9		fine-medium, ro with maximum Clayey Sand (\$	acy; about 30% fine sand; about 30% bunded gravel; damp; rounded cobbles dimension of 5" SC) - 7.5YR 3/3 dark brown; about 70% and; about 30% low-medium plasticity bist				−Hydrated Bentonite (granular) 27.5-28' #0/30 Sand 28-29'

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

Project Number: 60520471

Log of Boring 59-PW-14 Sheet 2 of 3

DID Doodling	רוט הפמוווט, אאוו	Graphic Log	MATERIAL DESCRIPTION	Well Log	
21			Clayey Sand (SC) - 7.5YR 3/3 dark brown; about 70% fine-medium sand; about 30% low-medium plasticity fines; damp-moist		—1" SCH 40 PVC Screen 0.020" Slot 30-32' —#2/12 Sand 29-33'
- - - -			Sandy Lean Clay (CL) - 7.5YR 3/3 dark bown; about 70% medium plasticity, firm fines, no dilatency; about 30% fine-coarse, sub angular sand; damp-moist		—Hydrated Bentonite Chips 33-57.5'
-			Poorly Graded Sand (SP) - 7.5YR 4/3 brown; about 95% poorly graded, fine-medium sand; about 5% non-plastic fines; damp-moist Clayey Sand (SC) - 7.5YR 3/3 dark brown; about 80%		—1" SCH 40 PVC Blank 0-60'
- - - 0.	.0		poorly graded, fine sand; about 20% medium plasticity fines; moist Lean Clay (CL) - 7.5YR 6/3 light brown; about 95% firm, medium-plasticity fines, no-slow dilatency; about 5% fine sand; black laminations observed		
-			Clayey Sand (SC) - 7.5YR 3/4 dark brown; about 85% poorly graded, fine sand; about 15% medium plasticity fines; damp-moist		Hydrated Bentonite (granular) 57.5-58' #0/30 Sand 58-59' #2/12 Sand 59-63'
- 11 - 1	.9				

Log of Boring 59-PW-14

Macintosh HD:Users:jack:Desktop:59-PW-14.bg4[5 nested wells.tp]

Project: Mather Bldg 4260

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

Project Number: 60520471

Log of Boring 59-PW-15 Sheet 1 of 3

18-19' -#2/12 Sand

19-23'

0-30'

#0/30 Sand 28-29'

-1" SCH 40 PVC Screen 0.020" Slot 20-22'

-Hydrated Bentonite (chips) 23-27.5'

-Hydrated Bentonite (graunular) 27.5-28'

1" SCH 40 PVC Blank

*

7

Project Number: 6052047	1						
Date(s) Drilled 1/30/17-1/31/17	Logged	By Jack Rayl		Checked I	Ву Do	n Bransford	
Prilling Nethod Sonic	Drill Bit Size/Ty			Total Dep of Boreho	th 83.	5'	
rill Rig ype FE6S56	Drilling Contractor Gregg Drilling & Testing, In Sampling			Approximate Surface Elevation			
roundwater Level N/A	Sampling Method(s) N/A			Hammer Data			
orehole ackfill See Well Log	Locatio	n Approximately 140' Sou	th-Southeas	st of buildi	ng 42	60	
Depth (feet) PID Reading, ppm Graphic Log	MATER	IAL DESCRIPTION		Well Log			
	brown; about 50% fine 30% medium plasticity fine-medium sand; moi Concrete ~7-8" Thick Clayey Gravel with Sar brown; about 50% fine 30% medium plasticity fine-medium sand; moi thick Clayey Gravel with Sar dark grayish brown; ab gravel; about 30% fine	nd (GC) - 10YR 4/2 dark gra -coarse, sub-round gravel; i fines; about 20% poorly gra ist; silty sand interebeds nd (GC) - 10YR 4/2 dark gra -coarse, sub-round gravel; i fines; about 20% poorly gra ist; silty sand interebeds ~1 nd and Cobbles (GC) - 10Y pout 50% fine-coarse, sub-rou- -medium, poorly graded san asticity fines; damp, sub-rou	about aded, ayish about aded, -3" R 4/2 ound nd;			 Flush-Mount Traffic-Rated Well Vault 0-0.5' Cement Grout 0.5-3' Hydrated Bentonite (chips) 3-6.5' T' SCH 40 PVC Blank 0-9' Hydrated Bentonite (granular) 6.5-7' #2/12 Sand 8-12' T' SCH 40 PVC Screen 0.020" Slot 9-11' Hydrated Bentonite (chips) 12-17.5' T' SCH 40 PVC Blank 0-20' Hydrated Bentonite (granular) 17.5-18' #0/30 Sand 	

Poorly Graded Sand (SP) - 10YR 4/3 brown; about 90%

Clayey Gravel with Sand and Cobbles (GC) - 10YR 4/2

dark grayish brown; about 50% fine-coarse, sub-round

gravel; about 30% poorly graded, fine-medium sand;

about 20% medium plasticity fines; damp, sub-round

Lean Clay (CL) - 10YR 5/4, yellowish brown; about 95%

medium plasticity, firm fines; about 5% poorly graded,

Poorly Graded Sand (SP) - 10YR 5/4, yellowish brown;

fine-medium, poorly graded sand; about 10% fine-coarse, sub-round gravel; moist

cobbles with maximum deminsion of 4"

fine sand; 10YR 5/4, yellowish brown

20

25

30

1.2

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

Project Number: 60520471

Log of Boring 59-PW-15 Sheet 2 of 3

Ĺ					
	ıg, ppm	5			
ಜ Depth (feet) 	PID Reading,	Graphic Log	MATERIAL DESCRIPTION	Well Log	
30 	3.6		Poorly Graded Sand (SP) - 10YR 5/4, yellowish brown; about 95% fine-medium, poorly graded sand; about 5% non-plastic fines. 7.5YR 4/6, Strong Brown (color change @ 32')		-#2/12 Sand 29'-33' 1" SCH 40 PVC Blank 0.020" Slot 30-32' Hydrated Bentonite (chips) 33-57.5'
- - - 40 -			Lean Clay (CL)- about 95% medium plascticity fines; about 5% fine sand; moist Poorly Graded Sand (SP) - 7.5YR 3/3 dark brown; about 95% fine, poorly graded sand; about 5% non-plastic fines; moist Lean Clay (CL) - about 95% medium plasticity, firm fines, slow dilatency; about 5% fine sand; moist		—1" SCH 40 PVC Blank 0-60'
- - 45 - -			Poorly Graded Sand (SP) - 7.5YR 3/3 dark brown; about 95% fine, poorly graded sand; about 5% fines; moist		
- 50 - -	5.8		Lean Clay (CL) - about 95% medium plasticity, firm fines; about 5% fine sand; 10YR 5/3 brown; damp; silt interbedds about 1"-3" thick		
			Poorly Graded Sand with Silt (SP) - 10YR 3/6 dark yellowish brown; about 90% fine-medium, poorly graded sand; about 10% non-plastic fines; damp		 Hydrated Bentonite (granular) 57.7-58' #0/30 Sand 58-59' #2/12 Sand 59-63' —1" SCH 40 PVC Screen 0.020" Slot 60-62'
₆₅		891939193919			

Project: Mather Bldg 4260 Project Location: Adjacent to Mather Aviation, LLC - Building 4260 Project Number: 60520471 LOG of Boring 59-PW-15 Sheet 3 of 3

ୁ Depth (feet)	PID Reading, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Log	
	0.3		Poorly Graded Sand with Silt (SP) - 10YR 3/6 dark yellowish brown; about 90% fine-medium, poorly graded sand; about 10% non-plastic fines; damp		 Hydrated Bentonite (chips) 63-77.5' —1" SCH 40 PVC Blank 0-80'
					10-13
80 — - - 85 — -			TD @ 83.5' bgs		—#2/12 Sand 79-83.5' —1" SCH 40 PVC Screen 0.020" Slot 80-82'
nested wells.tp]]					
Macintosh HD:Users:jack:Desktop:59-PW-14.bg4[5 nested wells.tp] 00 66 66 76 76 76 76 76 76 76 76 76 76 76					
Macintosh HD					

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

00500474

Log of Boring 59-PW-16 Sheet 1 of 3

/

• < •

ノノノノノン·言語ではない。ここのシノベノノノノノン·言語でい

18-19' -#2/12 Sand 19-23'

0-30'

-#0/30 Sand 28-29'

-Hydrated Bentonite (granular) 17.5-18' -#0/30 Sand

-1" SCH 40 PVC Screen 0.020" Slot 20-22'

-Hydrated Bentonite (chips) 23-27.5'

-Hydrated Bentonite (granular) 27.5-28'

1" SCH 40 PVC Blank

5YR 4/3 reddish brown; about 50% poorly graded, fine sand, about 40% fine-coarse, sub-round gravel; about 10% low-medium plasticity fines; moist	Project Numbe	er: 6052047	/1					
Image: Display of the set of the se	Date(s) Drilled 1/31/17-2/	/1/17		Logged By Jack Rayl		Checke	ed By Dc	n Bransford
Groundwater Level and Date Measured Backfill N/A Hammer Data N/A Borehole Backfill See Well Log Location Approximately 90' East-Southeast of Building 4260 Image: See Well Log Location Approximately 90' East-Southeast of Building 4260 Image: See Well Log MATERIAL DESCRIPTION Image: See Well Log Asphalt ~0.5' Image: See Well Log MATERIAL DESCRIPTION Image: See Well Log Asphalt with Sand and Cobbles (GC) - 5YR 4/3 redish brown; about 60% fine-coarse, sub-round gravel; about 25% poorly graded, fine san; about 15% low-medium plasticity, soft fines; saturated; Sub-round cobles with maximum dimension of 8" Soncrete ~7-8" Thick Image: Sond With Clay and Gravel (SP-SC) - 5YR 4/3 reddish brown; about 50% poorly graded, fine sand, about 40% fine-coarse, sub-round gravel; about 10% low-medium plasticity fines; moist						Total D of Bore	epth hole 83.	5'
and Date Measured Method(s) MA Data DAta Borehole Backfill See Well Log Location Approximately 90' East-Southeast of Building 4260 (a) U U Data Column Approximately 90' East-Southeast of Building 4260 (a) U Data Column Approximately 90' East-Southeast of Building 4260 (a) U Data Column Approximately 90' East-Southeast of Building 4260 (a) U Data Column Approximately 90' East-Southeast of Building 4260 (a) U Data Column Approximately 90' East-Southeast of Building 4260 (a) U Data Column Approximately 90' East-Southeast of Building 4260 (a) U Data Column Approximately 90' East-Southeast of Building 4260 (a) U U Column Approximately 90' East-Southeast of Building 4260 (a) U U Column Approximately 90' East-Southeast of Building 4260 (a) U Column Approximately 90' East-Southeast of Building 4260 (a) Column Approximately 90' East-Southeast of Building 4260 Column Approximately 90' East-Southeast of Building 4260 (a) Column Approximately 90' East-Southeast of Building 4260	Drill Rig Type FE6S56				ing, Inc.			n
Borehole See Well Log Location Approximately 90' East-Southeast of Building 4260 (199) Uadio Portion (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (199) (190) (199) (190) (199) (190) (199) (190) (199) (190) (199) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190) (190)	and Date Measured	N/A		Sampling Method(s) N/A			^{er} N/A	
Image: Section of the stand section of th	Borehole Backfill See Wel	ll Log		Location Approximately 90' East	-Southeast	of Buildir	ng 4260	
10- 1.9 0.020 Stot - 6-10	PID		Asphalt ~0.5' Clayey Gravel reddish brown gravel; about 2 low-medium pl cobbles with m Concrete ~7-8 Poorly Graded 5YR 4/3 reddis sand, about 40	with Sand and Cobbles (GC) - 5YF ; about 60% fine-coarse, sub-round 25% poorly graded, fine sand; about lasticity, soft fines; saturated; Sub-r naximum dimension of 8" " Thick I Sand with Clay and Gravel (SP-S0 sh brown; about 50% poorly graded 0% fine-coarse, sub-round gravel; a	t 15% ound			Traffic-Rated Well Vault 0-0.5' —Cement Grout 0.5-3' —Hydrated Bentonite (chips) 3-5.5' —1" SCH 40 PVC Blank 0-8' —Hydrated Bentonite (granular) 5.5-6' —#0/30 Sand 6-7' —#2/12 Sand 7-11' —1" SCH 40 PVC Screen 0.020" Slot 8-10' —Hydrated Bentonite (chips)

Macintosh HD:Users:jack:Desktop:59-PW-14.bg4[5 nested wells.tpl]

20 •

25

30

0.6

Poorly Graded Sand with Clay, Gravel and Cobbles (SP-SC) - 7.5YR 3/3 dark brown; about 60% fine-medium sand; about 30% medium-coarse, sub-round gravel; about 10% medium plasticity fines; moist; sub-round cobbles with maximum dimension of 5"

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

Project Number: 60520471

Log of Boring 59-PW-16 Sheet 2 of 3

	PID Reading, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Log	
0	3.6		Clayey Sand (SC) - 7.5YR 3/3 dark brown; about 80% poorly graded, fine-medium sand; about 20% medium plasticity fines; moist		-#2/12 Sand 29-33' 1" SCH 40 PVC Screen 0.020" Slot 30-32'
-	4.5		Poorly Graded Sand (SP) - 5YR 5/3 reddish brown; about 95% poorly graded, fine-medium sand; about 5% medium plasticity fines; moist		—1" SCH 40 PVC Blank 0-60'
0 - - -			7.5YR 4/6 strong brown (color change @ 40') Lean Clay with Sand (CL) - 7.5YR 4/6 strong brown;		
5 — - - -			about 80% medium plasticity, hard fines; about 20% fine sand; moist Poorly Graded Sand (SP) - 7.5YR 4/6 strong brown; about 95% poorly graded, fine sand; about 5% non-plastic fines; moist		
) - -	3.6		Lean Clay (CL) - about 95% medium plasticity, hard fines, no-slow dilatency; about 5% fine sand; 5YR 4/6 strong brown; damp; fine sand laminated bedding ovserved Clayey Sand (SC) - 7.5YR 4/6 strong brown; about 80%		
- 5 - - -			poorly graded, fine sand; about 20% low-medium plasticity fines; damp		—Hydrated Bentonite (granular) 57.5-58' —#0/30 Sand 58-59'
- - - - 5	3.8		Poorly Graded Sand with Clay (SP-SC) - 7.5YR 3/4 dark brown; about 90% fine sand; about 10% low-medium plasticity fines; damp		-#2/12 Sand 59-63' —1" SCH 40 PVC Screen 0.020" Slot 60-62' —1" SCH 40 PVC Blank 0-80'

Macintosh HD:Users:jack:Desktop:59-PW-14.bg4[5 nested wells.tpl]

Project Location: Adjacent to Mather Aviation, LLC - Building 4260

Log of Boring 59-PW-16 Sheet 3 of 3

Project Number: 60520471

g Depth (feet)	PID Reading, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Log	
	0.9		Poorly Graded Sand with Clay (SP-SC) - 7.5YR 3/4 dark brown; about 90% fine sand; about 10% low-medium plasticity fines; damp Poorly Graded Sand (SP) - 5YR 3/3 dark reddish brown; about 95% poorly graded, fine sand; about 5% medium plasticity fines; damp 5YR 4/6 Yellowish Red (color change @ 71')		—Hydrated Bentonite (chips) 63-77.5'
75 — - - - 80 — - - -					 Hydrated Bentonite (granular) 77.5-78' #0/30 Sand 78-79' #2/12 Sand 79-83.5' 1" SCH 40 PVC Screen 0.020" Slot 80-82'
- 85 - - - - 90 -			TD @ 83.5' bgs		
- - 95 - -					

Project Location: Adjacent to Mather Aviation, LLC - Building 4260 Aviation

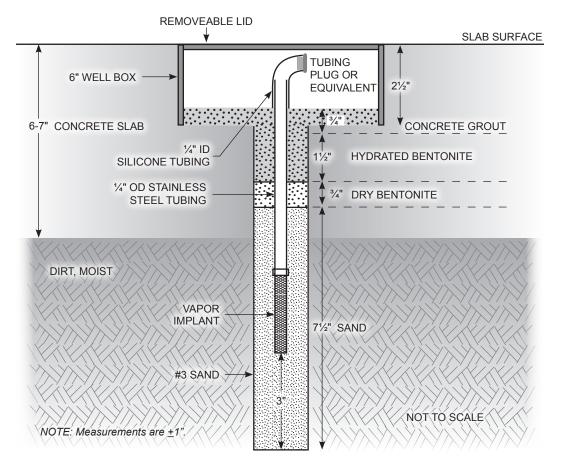
Log of Boring 59-PW-17 Sheet 1 of 3

Project Number: 60520471

Date(s) Drilled 2/4/17	Logged By Jack Rayl	Checked By Don Bransford
Drilling Method Sonic	Drill Bit Size/Type 12" Core	Total Depth of Borehole 83.5'
Drill Rig Type FE6S56	Drilling Contractor Gregg Drilling & Testing, Inc.	Approximate Surface Elevation
Groundwater Level and Date Measured N/A	Sampling Method(s) N/A	Hammer Data N/A
Borehole Backfill See Well Log	Location Inside Hanger (building 4260), Appro	oximately 40' From Eastern Hanger Doors

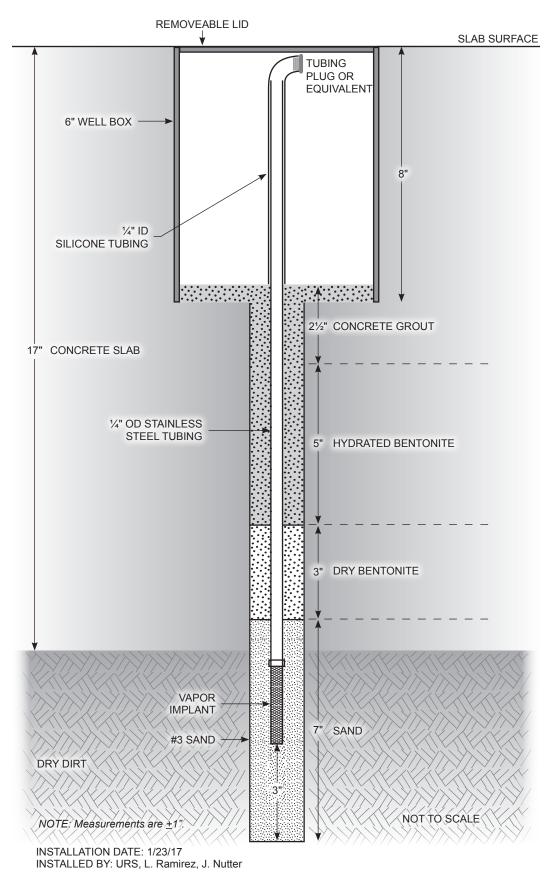
Depth (feet)	PID Reading, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Log	
0			17" Concrete		Flush-Mount
- - - 5_			Silty Sand (SM) - about 50% poorly graded, fine-medium sand; about 30% fine-coarse, sub-round gravel; about 20% non-plastic fines, moist Cobbles beginning @ 2.5'; round to sub-round with maximum dimension of 6"		 ─Hydrated Bentonite (chips) 3-5.5' ──1" SCH 40 PVC Blank 0-10'
-			Increasing cobble size, maximum dimension of 8", round to sub round, elongated Clayey Sand (SC) - 5YR 4/6 yellowish red; about 70% poorly graded, fine sand; about 30% medium-high plasticity fines; damp Clayey Sand with Gravel and Cobbles (SC) - 5YR 4/6 vellowish and vebust 60% fine candy about 20%		6-7' #2/12 Sand 7-11' —1" SCH 40 PVC Screen
10 — - - -			yellowish red; about 60% fine sand; about 20% coarse, sub-round gravel; about 20% low-high plasticity fines; 5YR 4/6 yellowish red; damp; sub-round cobbles with maximum dimension of 4"; 10-12' completely saturated Silty Sand with Gravel and Cobbles (SM) - 5YR 4/6		0.020" Slot 8-10' Hydrated Bentonite (chips) 11-17.5'
15 — - -		0 0 0 0 0 0 0 0 0 0 0 0 0 0	yellowish red; about 50% poorly graded, fine and; about 30% coarse, sub-angular gravel; about 20% non-plastic fines; elongated cobbles with maximum dimension of 7"; staining observed @ 14-14.5'		 —1" SCH 40 PVC Blank 0-20' —Hydrated Bentonite (granular) 17.5-18' —#0/30 Sand
- 20 — - -		0 0 0 0 0 0 0 0 0 0 0 0 0 0			#0/30/3810 18-19' #2/12 Sand 19-23'
- - 25 -	1.0				 Hydrated Bentonite (chips) 23-27.5' 1" SCH 40 PVC Blank 0-30'
30			Clayey Sand (SC) - 5YR 4/6 yellowish red; about 85% poorly graded, fine sand; about 15% medium-high plasticity fines; moist		Hydrated Bentonite (granular) 27.5-28' —#0/30 Sand 28-29'

Project Location: Adjacent to Mather Aviation, LLC - Building 4260 Aviation

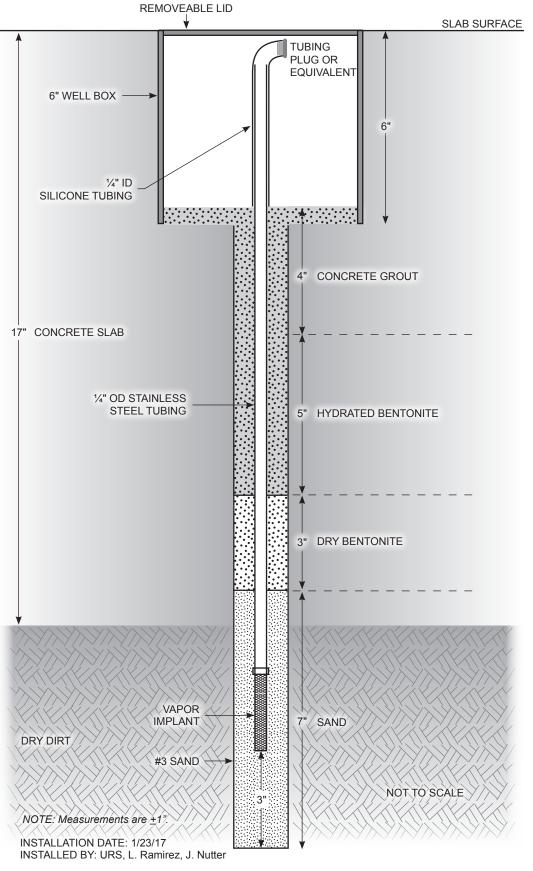

Project Number: 60520471

Depth (feet)	PID Reading, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Log	
30	1.9		Clayey Sand (SC) - 5YR 4/6 yellowish red; about 85% poorly graded, fine sand; about 15% medium-high plasticity fines; moist		 #2/12 Sand 29-33' —1" SCH 40 PVC Screen 0.020" Slot 30-32' —Hydrated Bentonite (chips) 33-57.5' —1" SCH 40 PVC Blank 0-60'
- 50 - - 55 - - - - - - - - - - - - - - - - - -			 Trace coarse gravel and cobble layer @ 62-63'; maximum cobble dimension of 3" 		Hydrated Bentonite (granular) 57.5-58' #0/30 Sand 58-59'
65					Hydrated Bentonite (chips) 63-77.5'

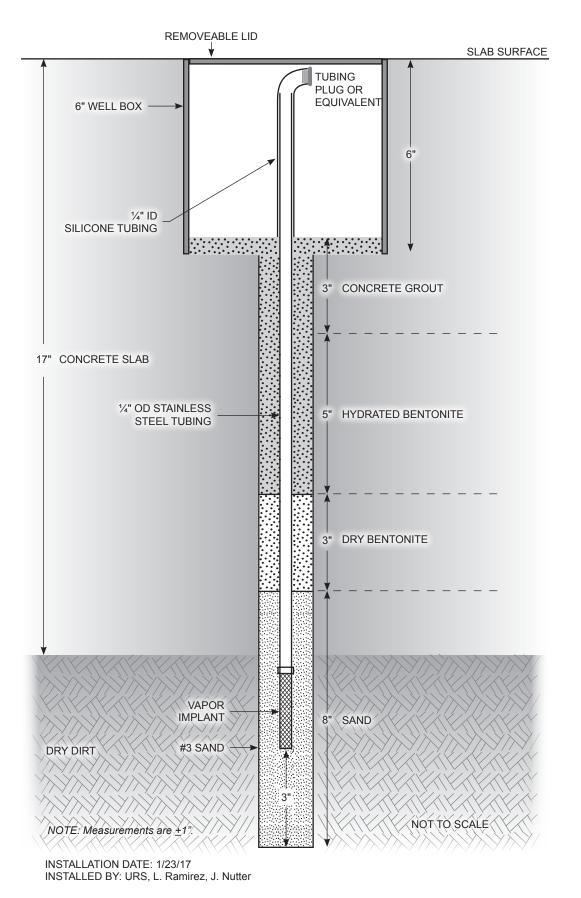
Project: Mather Bldg 4260 Project Location: Adjacent to Mather Aviation, LLC - Building 4260 Aviation Project Number: 60520471 Log of Boring 59-PW-17 Sheet 3 of 3


PID Reading, ppm Graphic Log Depth (feet) Well Log MATERIAL DESCRIPTION 65 Trace coarse gravel and cobble layer @ 62-63'; 1111111 maximum cobble dimension of 3" 70 ///// 1" SCH 40 PVC Blank 75 0-80' -Hydrated Bentonite (granular) 77.5-78' -#0.30 Sand 78-79' 80 -#2/12 Sand 79-83.5' Silty Sand (SM) - 10YR 5/4 yellowish red; about 85% • poorly graded, fine sand; about 15% non-plastic fines; -1" SCH 40 PVC Screen 0.020" Slot 80-82' damp TD @ 83.5' bgs 85 90 95 100

Macintosh HD:Users:jack:Desktop:59-PW-14.bg4[5 nested wells.tp]



INSTALLATION DATE: 1/19/17 INSTALLED BY: URS, B. Romero, L. Ramirez


> Sub-Slab Sampling Probe 59-SS-01 Construction Detail Site 59b, Former Mather Air Force Base

Sub-Slab Sampling Probe 59-SS-02 Construction Detail Site 59b, Former Mather Air Force Base

Sub-Slab Sampling Probe 59-SS-03 Construction Detail Site 59b, Former Mather Air Force Base

Sub-Slab Sampling Probe 59-SS-04 Construction Detail Site 59b, Former Mather Air Force Base

APPENDIX D

Data Quality Summary Analysis and

Analytical Data

Section D-1. Data Quality Summary for the Indoor Air, Sub Slab, and Ambient Air Samples Section D-2. Data Quality Summary for Baseline Soil Vapor and Perched Water Samples

Table D-1. Indoor Air Results, January 26-27, 2017 Table D-2. Soil Vapor Baseline Monitoring – Detected VOCs Baseline Table D-3. Comparison of TCE and Isopropanol Concentration Data in Soil Vapor

D-1

DATA QUALITY SUMMARY FOR INDOOR AIR, SUB SLAB, AND AMBIENT AIR VAPOR SAMPLES

This section summarizes the Quality Assurance and Quality Control (QC) results for samples collected and data generated in support of indoor air (including ambient air) and sub-slab samples from within and around Building 4260 (B4260) at the former Mather Air Force Base. The data quality was evaluated by examining the field results against laboratory accuracy and precision limits and the *Former Mather Air Force Base Site 59B Remedial Investigation Work Plan* (workplan; URS 2017a). URS Group, Inc. staff collected and validated the soil vapor samples.

Data were reviewed and qualified using the accuracy and precision criteria shown in Table E-2 of the workplan. Accuracy was evaluated using the percent recoveries of the spiked analytes in laboratory control samples (LCSs), surrogate spikes, and continuing calibration verification (CCV) analyses. The calculated relative percent difference (RPD) from field duplicate (FD), laboratory control sample duplicate (LCSD), and laboratory duplicate (LD) analyses were used to evaluate precision. External contamination was assessed through evaluation of method blanks. Comparability of the data was ensured by having project personnel follow standardized field procedures, described in the workplan, and having laboratories follow promulgated analytical methods. The completeness of the data is the measure of the amount of valid data divided by the number of total results (expressed as a percentage). Completeness and integrity of data were evaluated by validating all the project data, ensuring that all the analytical requests were met, noting whether samples were received in proper condition, and verifying that analyses were performed within the appropriate holding times. The following samples were collected and analyzed for nine contaminants of concern (COCs):

- Four sub-slab samples and one field duplicate (FD) sample by TO-15S
- Four indoor air samples and one FD sample by TO-15 selective ion monitoring (SIM)
- Two ambient air samples and one FD sample by TO-15SIM

Samples were collected on 26 and 27 January 2017. The nine COCs included 1,1,1-trichloroethane, 1,1-dichloroethene, 1,2-dichloroethane, carbon tetrachloride, cis-1,2-dichloroethene, tetrachloroethene, trans-1,2-dichloroethene, trichloroethene, and vinyl chloride. Isopropanol (leak check compound) was also reported for samples analyzed by TO-15S. All soil vapor samples were analyzed by Eurofins Air Toxics Ltd. in Folsom, California.

The data were evaluated at a minimum for the following parameters:

(*)		sample integrity
(\cdot)	-	
(*)	-	CCV analysis
(#)	-	blank analysis
(*)	-	LCS recoveries
(*)	-	surrogate spike recoveries
(#)		LCSD, FD, or LD RPDs
(*)	-	reporting limits (RLs)
(*)	-	data completeness
(*)	=	All criteria were met for this parameter.
(#)	=	See below for parameter not meeting criteria.

No rejected results (R flagged) occurred. Data flagged as estimated (JF or F) are acceptable and usable with an understanding of limitations, as noted by the U.S. Environmental Protection Agency data flags. Data flagged with "F" were detected between the reporting limit (RL) and detection limit (DL), and are considered estimated concentrations. Data flagged with a "J" are considered to be estimated because of QC criteria that did not meet project limits. Data flagged "B" should be considered not detected; the result is an artifact of external contamination and does not represent site conditions.

Based on the validation performed, all soil gas data are acceptable and can be used for data interpretation. Completeness for the B4260 data is provided in Table 1. Qualified sample results are shown in Table 2 at the end of this section. For Method TO-15S and TO-15SIM, 42 out of 122 field soil vapor results are qualified as estimated concentrations or as "not detected" because of external contamination. A summary of the qualified results are as follows:

- Eight results are qualified as estimated concentrations (F) because they were detected between the RL and DL.
- Two results are qualified as estimated (JF) because they were detected between the RL and DL, and indicated FD imprecision.
- A total of 32 results are qualified as not detected (FB) because the detection is associated with blank contamination.

Method	Number of Samples ^a	Number of Analytes [♭]	Total Number of Results	Number of Qualified Results	Number of Rejected Results	Percent Completeness
Volatile Organ	nic Compounds					
TO-15S	5	10	50	5	0	100%
TO-15 SIM	8	9	72	37	0	100%

b. Based on the analyte lists requested.

						Reason			
Sample Date	Sample Name	Analyte	Result	Unit	EPA Flags	Codes	DL	RL	DF
TO15SIM	•								
1/26/17 16:18	59-AA-01-FD	1,2-Dichloroethane	0.064	$\mu g/m_3$	FB	1A	0.014	0.19	2.3
1/26/17 16:18	59-AA-01-FD	Tetrachloroethene	0.04	$\mu g/m_3$	FB	1A	0.015	0.31	2.3
1/26/17 16:18	59-AA-01-FD	Trichloroethene	0.028	$\mu g/m_3$	FB	1A	0.013	0.25	2.3
1/26/17 16:18	59-AA-01-FD	1,1,1-Trichloroethane	0.039	$\mu g/m_3$	FB	1A	0.022	0.25	2.3
1/26/17 16:18	59-AA-01-NS	1,2-Dichloroethane	0.06	$\mu g/m_3$	FB	1A	0.014	0.19	2.3
1/26/17 16:18	59-AA-01-NS	Tetrachloroethene	0.032	$\mu g/m_3$	FB	1A	0.015	0.31	2.3
1/26/17 16:18	59-AA-01-NS	Trichloroethene	0.023	$\mu g/m_3$	FB	1A	0.013	0.25	2.3
1/26/17 16:18	59-AA-01-NS	1,1,1-Trichloroethane	0.044	$\mu g/m_3$	FB	1A	0.022	0.25	2.3
1/26/17 16:25	59-AA-02-NS	1,2-Dichloroethane	0.062	$\mu g/m_3$	FB	1A	0.0097	0.12	1.55
1/26/17 16:25	59-AA-02-NS	Tetrachloroethene	0.033	$\mu g/m_3$	FB	1A	0.01	0.21	1.55
1/26/17 16:25	59-AA-02-NS	Trichloroethene	0.017	$\mu g/m_3$	FB	1A	0.0088	0.17	1.55
1/26/17 16:25	59-AA-02-NS	1,1,1-Trichloroethane	0.022	$\mu g/m_3$	FB	1A	0.015	0.17	1.55
1/26/17 16:15	59-IA-01-FD	Tetrachloroethene	0.061	$\mu g/m_3$	FB	1A	0.016	0.33	2.44
1/26/17 16:15	59-IA-01-FD	Carbon Tetrachloride	0.22	$\mu g/m_3$	JF	6G,3D	0.012	0.31	2.44
1/26/17 16:15	59-IA-01-FD	trans-1,2-Dichloroethene	0.63	$\mu g/m_3$	F	6G	0.018	0.97	2.44
1/26/17 16:15	59-IA-01-FD	Trichloroethene	0.025	$\mu g/m_3$	FB	1A	0.014	0.26	2.44
1/26/17 16:15	59-IA-01-FD	1,2-Dichloroethane	0.1	$\mu g/m_3$	FB	1A	0.015	0.2	2.44
1/26/17 16:15	59-IA-01-FD	1,1,1-Trichloroethane	0.029	$\mu g/m_3$	FB	1A	0.024	0.27	2.44
1/26/17 16:15	59-IA-01-NS	Tetrachloroethene	0.05	$\mu g/m_3$	FB	1A	0.016	0.33	2.44
1/26/17 16:15	59-IA-01-NS	Carbon Tetrachloride	0.43	$\mu g/m_3$	JF	6G,3D	0.012	0.31	2.44
1/26/17 16:15	59-IA-01-NS	1,2-Dichloroethane	0.12	$\mu g/m_3$	FB	1A	0.015	0.2	2.44
1/26/17 16:15	59-IA-01-NS	1,1,1-Trichloroethane	0.043	$\mu g/m_3$	FB	1A	0.024	0.27	2.44
1/26/17 16:15	59-IA-01-NS	Trichloroethene	0.028	$\mu g/m_3$	FB	1A	0.014	0.26	2.44
1/26/17 16:15	59-IA-01-NS	trans-1,2-Dichloroethene	0.68	$\mu g/m_3$	F	6G	0.018	0.97	2.44
1/26/17 16:12	59-IA-02-NS	1,2-Dichloroethane	0.096	$\mu g/m_3$	FB	1A	0.0098	0.13	1.58
1/26/17 16:12	59-IA-02-NS	Tetrachloroethene	0.054	$\mu g/m_3$	FB	1A	0.01	0.21	1.58
1/26/17 16:12	59-IA-02-NS	Trichloroethene	0.026	$\mu g/m_3$	FB	1A	0.009	0.17	1.58
1/26/17 16:12	59-IA-02-NS	trans-1,2-Dichloroethene	0.56	$\mu g/m_3$	F	6G	0.012	0.63	1.58
1/26/17 16:12	59-IA-02-NS	1,1,1-Trichloroethane	0.036	$\mu g/m_3$	FB	1A	0.015	0.17	1.58
1/26/17 16:13	59-IA-03-NS	1,2-Dichloroethane	0.095	$\mu g/m_3$	FB	1A	0.0098	0.13	1.58
1/26/17 16:13	59-IA-03-NS	Trichloroethene	0.021	$\mu g/m_3$	FB	1A	0.009	0.17	1.58
1/26/17 16:13	59-IA-03-NS	Tetrachloroethene	0.053	$\mu g/m_3$	FB	1A	0.01	0.21	1.58
1/26/17 16:13	59-IA-03-NS	1,1,1-Trichloroethane	0.036	$\mu g/m_3$	FB	1A	0.015	0.17	1.58
1/26/17 16:14	59-IA-04-NS	1,2-Dichloroethane	0.096	$\mu g/m_3$	FB	1A	0.0098	0.13	1.58

Table 2 Qualified D - for 2017 Inda Ala Cub Clab al Amarkia A A :-- D

					Reason				
Sample Date	Sample Name	Analyte	Result	Unit	EPA Flags	Codes	DL	RL	DF
1/26/17 16:14	59-IA-04-NS	Trichloroethene	0.028	$\mu g/m_3$	FB	1A	0.009	0.17	1.58
/26/17 16:14	59-IA-04-NS	Tetrachloroethene	0.052	$\mu g/m_3$	FB	1A	0.01	0.21	1.58
/26/17 16:14	59-IA-04-NS	1,1,1-Trichloroethane	0.069	$\mu g/m_3$	FB	1A	0.015	0.17	1.58
ГО15									
/27/17 8:22	59-SS-01-FD	Trichloroethene	16	$\mu g/m_3$	F	6G	2.4	11	2.25
/27/17 8:22	59-SS-01-NS	Trichloroethene	24	$\mu g/m_3$	F	6G	2.4	11	2.27
/27/17 9:08	59-SS-02-NS	Trichloroethene	36	$\mu g/m_3$	F	6G	2.3	11	2.22
/27/17 9:33	59-SS-03-NS	Trichloroethene	37	$\mu g/m_3$	F	6G	2.2	11	2.12
/27/17 8:48	59-SS-04-NS	Isopropanol	61	$\mu g/m_3$	F	6G	5.6	43	2.17

ACRONYMS	

- dilution factor DF =detection limit =
- DL
- U.S. Environmental Protection Agency EPA =
- field duplicate FD =
- normal sample NS =
- quality control QC =
- reporting limit RL =
- SIM selective ion monitoring =

UNITS

micrograms per cubic meter $\mu g/m_3 =$

EPA FLAG

- Estimated result; analyte detected between the RL and DL F =
- Estimated result; analyte detected between the RL and DL; result is attributed to blank contamination FB =
- JF = Estimated result; analyte detected between the RL and DL; one or more QC criteria were not met

REASON CODE

- Method blank contamination 1A =
- 3D Field duplicate imprecision =
- Analyte detected between the RL and DL 6G =

D-2

DATA QUALITY SUMMARY FOR BASELINE SOIL VAPOR AND GROUNDWATER SAMPLES

This section summarizes the Quality Assurance and Quality Control (QC) results for samples collected and data generated in support of soil vapor and groundwater samples collected from within and around Building 4260 (B4260) at the former Mather Air Force Base. The data quality was evaluated by examining the field results against laboratory accuracy and precision limits. URS Group, Inc. staff collected and validated the samples.

Data were reviewed and qualified using the accuracy and precision criteria provided by the laboratories. Accuracy was evaluated using the percent recoveries of the spiked analytes in laboratory control samples (LCSs), surrogate spikes, and continuing calibration verification (CCV) analyses. The calculated relative percent difference (RPD) from field duplicate (FD), laboratory control sample duplicate (LCSD), and laboratory duplicate (LD) analyses was used to evaluate precision. External contamination was assessed through evaluation of method blanks. Comparability of the data was ensured by having project personnel follow standardized field procedures, described in the workplan, and having the laboratories follow promulgated analytical methods. The completeness of the data is the measure of the amount of valid data divided by the number of total results (expressed as a percentage). Completeness and integrity of data were evaluated by validating all the project data, ensuring that all the analytical requests were met, noting whether samples were received in proper condition, and verifying that analyses were performed within the appropriate holding times. The following samples were collected and analyzed for contaminants of concern:

- A total of 37 soil vapor samples and five FD samples for select volatile organic compounds (VOCs) by Method TO-15
- Five groundwater samples for VOCs by Method SW8260B

Samples were collected on 1, 2, 3, 7 and 8 November 2017. All soil vapor samples were analyzed by Eurofins Air Toxics Ltd. in Folsom, California. The groundwater samples were analyzed by Enthalpy Analytical in Berkeley, California.

The data were evaluated at a minimum for the following parameters:

(*)	-	sample integrity
(#)	-	CCV analysis
(#)	-	blank analysis
(#)	-	LCS recoveries
(*)	-	surrogate spike recoveries
(*)	-	LCSD, FD, or LD RPDs
(*)	-	reporting limits (RLs)
(*)	-	data completeness
		-
(*)	=	All criteria were met for this parameter.

(#) = See below for parameter not meeting criteria.

No rejected results (R flagged) occurred. Data results flagged as estimated (J or F) are acceptable and usable, with an understanding of limitations, as noted by the U.S. Environmental Protection Agency data flags. Data flagged with "F" were detected between the reporting limit (RL) and detection limit (DL), and

also are considered estimated concentrations. Data flagged with a "J" are considered estimated because of QC criteria that did not meet project limits. Non-detect results flagged (UJ) are considered to have estimated reporting limits with a potential for false negative results at the stated reporting limit. Furthermore, data flagged "B" should be considered not detected; the result is an artifact of external contamination and does not represent site conditions.

Based on the validation performed, all data are acceptable and can be used for data interpretation. Completeness for the B4260 data is shown in Table 1. Qualified sample results are shown in Table 2 at the end of this section.

For Method TO-15, 105 out of 1,008 soil vapor results are qualified as estimated concentrations, estimated reporting limits, or as "not detected." A summary of the qualified results are as follows:

- A total of 79 results are qualified as estimated concentrations (F) because they were detected between the RL and DL.
- Two results are qualified as estimated (J) because the results exceeded the calibration range.
- Three results are qualified as not detected (B) because the detection is associated with blank contamination. One result is flagged for potential high bias (J+) because of blank contamination.
- A total of 20 non-detect results (naphthalene) are qualified for having estimated RLs with a potential for false negative results at the stated RLs because of low CCVs or LCS recoveries.

For Method SW8260B, no VOC results are qualified.

Method	Number of Samples ^a	Number of Analytes ^b	Total Number of Results	Number of Qualified Results	Number of Rejected Results	Percent Completeness
Volatile Organ	nic Compounds	-				
TO-15	42	24	1,008	105	0	100%
SW8260B	5	67	335	0	0	100%

		Table 2. Qualified Data	a for 2017	Baseline Soil	Vapor Resu	lts			
	Reason								
Sample Date	Sample Name	Analyte	Result	EPA Flags	Codes	DL	RL	DF	
TO-15 (ppbv)									
11/7/17 12:08	59-PW-05-10-NS	Naphthalene	0	UJ	2A-	0.79	49	2.46	
		Isopropanol	10	F	6G	5.4	49	2.46	
		cis-1,2-Dichloroethene	2.3	F	6G	2.1	12	2.46	
11/7/17 12:19	59-PW-05-30-NS	Naphthalene	0	UJ	2A-	0.78	49	2.44	
		Chloroform	2	F	6G	1.9	12	2.44	
11/7/17 12:32	59-PW-05-50-NS	Trichloroethene	18	$\mathbf{J}+$	1A	1.8	12	2.49	
		Naphthalene	0	UJ	2A-	0.8	50	2.49	
11/7/17 12:47	59-PW-05-70-NS	Naphthalene	0	UJ	2A-	0.79	49	2.47	
		cis-1,2-Dichloroethene	3.2	F	6G	2.1	12	2.47	
		Carbon Tetrachloride	4.5	F	6G	1.8	12	2.47	
		Chloroform	4.3	F	6G	1.9	12	2.47	
11/7/17 9:20	59-PW-06-11-NS	Naphthalene	0	UJ	2A-	0.76	48	2.38	
11/7/17 9:36	59-PW-06-31-NS	Trichloroethene	10	В	1A	1.8	12	2.42	
		Naphthalene	0	UJ	2A-	0.77	48	2.42	
11/7/17 9:59	59-PW-06-51-FD	Trichloroethene	11	В	1A	1.7	12	2.39	
		Naphthalene	0	UJ	2A-	0.76	48	2.39	
11/7/17 9:59	59-PW-06-51-NS	Trichloroethene	10	В	1A	1.8	12	2.42	
		Naphthalene	0	UJ	2A-	0.77	48	2.42	
11/7/17 10:21	59-PW-06-70-NS	Naphthalene	0	UJ	5B-	0.77	48	2.4	
		1,1-Dichloroethene	5.2	F	6G	1.5	12	2.4	
		Chloroform	2.9	F	6G	1.9	12	2.4	
11/7/17 8:53	59-PW-07-10-NS	Naphthalene	0	UJ	5B-	0.76	48	2.39	
		Chloroform	6.8	F	6G	1.9	12	2.39	
		1,1,1-Trichloroethane	5	F	6G	1.3	12	2.39	
		cis-1,2-Dichloroethene	3.4	F	6G	2	12	2.39	
11/7/17 8:26	59-PW-08-10-NS	Naphthalene	0	UJ	5B-	0.74	46	2.31	
		cis-1,2-Dichloroethene	3.6	F	6G	1.9	12	2.31	
		Chloroform	3.3	F	6G	1.8	12	2.31	
		1,1-Dichloroethene	11	F	6G	1.4	12	2.31	
		Carbon Tetrachloride	4.6	F	6G	1.7	12	2.31	
11/7/17 13:19	59-PW-09A-10-NS	Naphthalene	0	UJ	5B-	0.81	50	2.52	
		Chloroform	8.6	F	6G	2	13	2.52	
11/7/17 13:37	59-PW-09B-20-FD	Naphthalene	0	UJ	5B-	1.3	83	4.16	
		Isopropanol	29	F	6G	9.2	83	4.16	
		Chloroform	8	F	6G	3.2	21	4.16	

	Table	2. Qualified Data for 20	17 Baseli	ne Soil Vapo	r Results (C	ontinued)		
Sample Date	Sample Name	Analyte	Result	EPA Flags	Codes	DL	RL	DF
11/7/17 13:37	59-PW-09B-20-NS	Naphthalene	0	UJ	5B-	0.81	50	2.52
		Chlorobenzene	1.8	F	6G	1.6	13	2.52
		Chloroform	7.9	F	6G	2	13	2.52
		Isopropanol	6.4	F	6G	5.5	50	2.52
11/7/17 11:30	59-PW-10A-08-NS	Naphthalene	0	UJ	5B-	0.78	49	2.44
		Isopropanol	30000	J	6E	5.4	49	2.44
		Trichloroethene	5.6	F	6G	1.8	12	2.44
		Toluene	3	F	6G	1.4	12	2.44
11/7/17 11:45	59-PW-10B-20-NS	Naphthalene	0	UJ	5B-	0.76	48	2.38
		Trichloroethene	3.9	F	6G	1.7	12	2.38
		Tetrachloroethene	5.8	F	6G	1.1	12	2.38
11/8/17 8:05	59-PW-11A-08-FD	Naphthalene	0	UJ	5B-	0.76	47	2.37
		Toluene	3.2	F	6G	1.4	12	2.37
		m,p-Xylenes	3.8	F	6G	1.5	12	2.37
11/8/17 8:05	59-PW-11A-08-NS	Naphthalene	0	UJ	5B-	0.76	48	2.39
		Isopropanol	5.3	F	6G	5.2	48	2.39
11/7/17 8:17	59-PW-11B-20-NS	Naphthalene	0	UJ	5B-	0.76	47	2.36
		1,1,1-Trichloroethane	4.1	F	6G	1.3	12	2.36
		Isopropanol	29	F	6G	5.2	47	2.36
		Chloroform	3.2	F	6G	1.8	12	2.36
11/7/17 14:04	59-PW-12A-08-NS	Tetrachloroethene	320	F	6G	220	2400	485
		Chloroform	500	F	6G	380	2400	485
		Isopropanol	8900	F	6G	1100	9700	485
11/7/17 14:21	59-PW-12B-20-NS	Tetrachloroethene	66	F	6G	18	200	41
		trans-1,2-Dichloroethene	180	F	6G	56	200	41
11/2/17 9:42	59-PW-13A-08-NS	Naphthalene	0	UJ	5B-	0.78	49	2.44
		Isopropanol	25000	J	6E	5.4	49	2.44
		Trichloroethene	1.8	F	6G	1.8	12	2.44
		Benzene	1.7	F	6G	1.7	12	2.44
11/2/17 10:07	59-PW-13B-20-NS	1,1,1-Trichloroethane	6.6	F	6G	1.4	12	2.46
		Chloroform	5.4	F	6G	1.9	12	2.46
		cis-1,2-Dichloroethene	3.9	F	6G	2.1	12	2.46
11/1/17 10:06	59-PW-14-30-NS	Trichloroethene	100	F	6G	31	210	42.9

Osmala Data	O	Australia	Dessilt		Reason	21	51	55
Sample Date	Sample Name	Analyte	Result	EPA Flags	Codes	DL	RL	DF
11/1/17 11:30	59-PW-14-60-FD	Chlorobenzene	1.8	F	6G	1.7	14	2.75
		Carbon Tetrachloride	3.6	F	6G	2.1	14	2.75
		Trichlorofluoromethane	2.9	F	6G	1.3	14	2.75
		cis-1,2-Dichloroethene	9.3	F	6G	2.3	14	2.75
11/1/17 11:30	59-PW-14-60-NS	cis-1,2-Dichloroethene	7.4	F	6G	2.2	13	2.68
		Carbon Tetrachloride	4	F	6G	2	13	2.68
		Trichlorofluoromethane	2.2	F	6G	1.3	13	2.68
11/3/17 8:36	59-PW-14-80-NS	Trichlorofluoromethane	2.3	F	6G	1.1	12	2.38
		Carbon Tetrachloride	3.1	F	6G	1.8	12	2.38
		cis-1,2-Dichloroethene	4.9	F	6G	2	12	2.38
11/2/17 13:55	59-PW-15-20-NS	Tetrachloroethene	4	F	6G	1.1	12	2.4
11/2/17 14:23	59-PW-15-60-NS	Chloroform	3	F	6G	1.9	12	2.44
		Tetrachloroethene	3.4	F	6G	1.1	12	2.44
11/1/17 14:26	59-PW-16-20-NS	1,1,1-Trichloroethane	3.9	F	6G	1.4	12	2.48
		Tetrachloroethene	9.8	F	6G	1.1	12	2.48
		Chloroform	4.2	F	6G	1.9	12	2.48
11/1/17 14:41	59-PW-16-30-NS	Tetrachloroethene	3.4	F	6G	1.1	12	2.51
		1,1-Dichloroethene	12	F	6G	1.5	12	2.51
		Isopropanol	15	F	6G	5.5	50	2.51
		Chloroform	2.7	F	6G	2	12	2.51
11/3/17 7:55	59-PW-16-60-NS	Tetrachloroethene	12	F	6G	2.1	24	4.76
		1,1-Dichloroethene	3.3	F	6G	2.9	24	4.76
		Chloroform	16	F	6G	3.7	24	4.76
11/3/17 9:31	59-PW-17-08-NS	Trichloroethene	8.1	F	6G	1.8	12	2.46
		Isopropanol	19	F	6G	5.4	49	2.46
11/3/17 9:50	59-PW-17-20-FD	Toluene	2.8	F	6G	1.4	12	2.32
11/3/17 9:50	59-PW-17-20-NS	Toluene	2.3	F	6G	1.4	12	2.32
11,5/17 7.50	571111/20110	cis-1,2-Dichloroethene	2.2	F	6G	2	12	2.38
11/3/17 10:03	59-PW-17-30-NS	1,1,1-Trichloroethane	4.1	F	6G	1.3	12	2.30
11/3/17 10:03	57 1 11 17-50-115	cis-1,2-Dichloroethene	2.1	F	6G	1.9	12	2.31
		Toluene	1.8	F	6G	1.9	12	2.31
11/2/17 12:35	59-PW-17-60-NS	1,1-Dichloroethene	1.8 7.5	F	6G	1.4	12	2.31
11/2/17 12.33	JJ-1 W-1/-00-1ND	Toluene	4.8	F	6G	1.5	12	2.4
		Chloroform	4.8 9.8	F	6G	1.4	12	2.4

						Reason			
Sampl	e Date	Sample Name	Analyte	Result	EPA Flags	Codes	DL	RL	DF
	11/3/17 10:28	59-PW-17-80-NS	Tetrachloroethene	4.6	F	6G	1.1	12	2.48
			m,p-Xylenes	1.6	F	6G	1.5	12	2.48
			Toluene	9.4	F	6G	1.5	12	2.48
ACRONY	MS								
	=	dilution factor							
DL	=	detection limit							
EPA	=	U.S. Environmental Protec	tion Agency						
FD	=	field duplicate	.						
NS	=	normal sample							
RL	=	reporting limit							
EPA FLA	G								
-	=	associated with blank conta	amination						
-	=	detected between the RL and	nd DL						
J	=	estimated concentration							
J+	=	estimated concentration; po	otential high bias						
UJ	=		ated RL with potential for false	e negative result					
REASON	CODE								
	=	associated with method bla	ink contamination						
2B-	=	low matrix spike recovery							
5B-	=	low continuing calibration	recovery						
6E	=	exceeds calibration range	-						
6G	=	detected between the RL and	nd DL						

Table 2. Qualified Data for 2017 Baseline Soil Vapor Results									
Sample Date	Sample Name	Analyte	Result	EPA Flags	Reason Codes	DL	RL	DF	
TO-15 (ppbv)	Sample Name	Analyte	Result	EFA Flays	Codes	DL	RL.	DF	
11/7/17 12:08	59-PW-05-10-NS	Naphthalene	0	UJ	2A-	0.79	49	2.46	
11///1/ 12:08	39-PW-03-10-INS	Isopropanol	0 10	F	2A- 6G	0.79 5.4	49 49	2.46	
		cis-1,2-Dichloroethene	2.3	F	6G 6G	3.4 2.1	49 12	2.46	
11/7/17 12.10	50 DW 05 20 NG	· · · · · · · · · · · · · · · · · · ·		г UJ		0.78	49		
11/7/17 12:19	59-PW-05-30-NS	Naphthalene	0		2A-			2.44	
11/7/17 10.20	50 DW 05 50 NG	Chloroform Trichloroethene	2	F	6G	1.9	12	2.44	
11/7/17 12:32	59-PW-05-50-NS		18	J+	1A	1.8	12	2.49	
		Naphthalene	0	UJ	2A-	0.8	50	2.49	
11/7/17 12:47	59-PW-05-70-NS	Naphthalene	0	UJ	2A-	0.79	49	2.47	
		cis-1,2-Dichloroethene	3.2	F	6G	2.1	12	2.47	
		Carbon Tetrachloride	4.5	F	6G	1.8	12	2.47	
		Chloroform	4.3	F	6G	1.9	12	2.47	
11/7/17 9:20	59-PW-06-11-NS	Naphthalene	0	UJ	2A-	0.76	48	2.38	
11/7/17 9:36	59-PW-06-31-NS	Trichloroethene	10	В	1A	1.8	12	2.42	
		Naphthalene	0	UJ	2A-	0.77	48	2.42	
11/7/17 9:59	59-PW-06-51-FD	Trichloroethene	11	В	1A	1.7	12	2.39	
		Naphthalene	0	UJ	2A-	0.76	48	2.39	
11/7/17 9:59	59-PW-06-51-NS	Trichloroethene	10	В	1A	1.8	12	2.42	
		Naphthalene	0	UJ	2A-	0.77	48	2.42	
11/7/17 10:21	59-PW-06-70-NS	Naphthalene	0	UJ	5B-	0.77	48	2.4	
		1,1-Dichloroethene	5.2	F	6G	1.5	12	2.4	
		Chloroform	2.9	F	6G	1.9	12	2.4	
11/7/17 8:53	59-PW-07-10-NS	Naphthalene	0	UJ	5B-	0.76	48	2.39	
		Chloroform	6.8	F	6G	1.9	12	2.39	
		1,1,1-Trichloroethane	5	F	6G	1.3	12	2.39	
		cis-1,2-Dichloroethene	3.4	F	6G	2	12	2.39	
11/7/17 8:26	59-PW-08-10-NS	Naphthalene	0	UJ	5B-	0.74	46	2.31	
		cis-1,2-Dichloroethene	3.6	F	6G	1.9	12	2.31	
		Chloroform	3.3	F	6G	1.8	12	2.31	
		1,1-Dichloroethene	11	F	6G	1.4	12	2.31	
		Carbon Tetrachloride	4.6	F	6G	1.7	12	2.31	
11/7/17 13:19	59-PW-09A-10-NS	Naphthalene	0	ŪJ	5B-	0.81	50	2.52	
		Chloroform	8.6	F	6G	2	13	2.52	
11/7/17 13:37	59-PW-09B-20-FD	Naphthalene	0	UJ	5B-	1.3	83	4.16	
		Isopropanol	29	F	6G	9.2	83	4.16	
		Chloroform	8	F	6G	3.2	21	4.16	

	Table	e 2. Qualified Data for 20	17 Baseli	ine Soil Vapo	r Results (C	ontinued)		
					Reason			
Sample Date	Sample Name	Analyte	Result	EPA Flags	Codes	DL	RL	DF
11/7/17 13:37	59-PW-09B-20-NS	Naphthalene	0	UJ	5B-	0.81	50	2.52
		Chlorobenzene	1.8	F	6G	1.6	13	2.52
		Chloroform	7.9	F	6G	2	13	2.52
		Isopropanol	6.4	F	6G	5.5	50	2.52
11/7/17 11:30	59-PW-10A-08-NS	Naphthalene	0	UJ	5B-	0.78	49	2.44
		Isopropanol	30000	J	6E	5.4	49	2.44
		Trichloroethene	5.6	F	6G	1.8	12	2.44
		Toluene	3	F	6G	1.4	12	2.44
11/7/17 11:45	59-PW-10B-20-NS	Naphthalene	0	UJ	5B-	0.76	48	2.38
		Trichloroethene	3.9	F	6G	1.7	12	2.38
		Tetrachloroethene	5.8	F	6G	1.1	12	2.38
11/8/17 8:05	59-PW-11A-08-FD	Naphthalene	0	UJ	5B-	0.76	47	2.37
		Toluene	3.2	F	6G	1.4	12	2.37
		m,p-Xylenes	3.8	F	6G	1.5	12	2.37
11/8/17 8:05	59-PW-11A-08-NS	Naphthalene	0	UJ	5B-	0.76	48	2.39
		Isopropanol	5.3	F	6G	5.2	48	2.39
11/7/17 8:17	59-PW-11B-20-NS	Naphthalene	0	UJ	5B-	0.76	47	2.36
		1,1,1-Trichloroethane	4.1	F	6G	1.3	12	2.36
		Isopropanol	29	F	6G	5.2	47	2.36
		Chloroform	3.2	F	6G	1.8	12	2.36
11/7/17 14:04	59-PW-12A-08-NS	Tetrachloroethene	320	F	6G	220	2400	485
		Chloroform	500	F	6G	380	2400	485
		Isopropanol	8900	F	6G	1100	9700	485
11/7/17 14:21	59-PW-12B-20-NS	Tetrachloroethene	66	F	6G	18	200	41
		trans-1,2-Dichloroethene	180	F	6G	56	200	41
11/2/17 9:42	59-PW-13A-08-NS	Naphthalene	0	UJ	5B-	0.78	49	2.44
		Isopropanol	25000	J	6E	5.4	49	2.44
		Trichloroethene	1.8	F	6G	1.8	12	2.44
		Benzene	1.7	F	6G	1.7	12	2.44
11/2/17 10:07	59-PW-13B-20-NS	1,1,1-Trichloroethane	6.6	F	6G	1.4	12	2.46
		Chloroform	5.4	F	6G	1.9	12	2.46
		cis-1,2-Dichloroethene	3.9	F	6G	2.1	12	2.46
11/1/17 10:06	59-PW-14-30-NS	Trichloroethene	100	F	6G	31	210	42.9

		2. Qualified Data for 20		•	Reason			
Sample Date	Sample Name	Analyte	Result	EPA Flags	Codes	DL	RL	DF
11/1/17 11:30	59-PW-14-60-FD	Chlorobenzene	1.8	F	6G	1.7	14	2.75
		Carbon Tetrachloride	3.6	F	6G	2.1	14	2.75
		Trichlorofluoromethane	2.9	F	6G	1.3	14	2.75
		cis-1,2-Dichloroethene	9.3	F	6G	2.3	14	2.75
11/1/17 11:30	59-PW-14-60-NS	cis-1,2-Dichloroethene	7.4	F	6G	2.2	13	2.68
		Carbon Tetrachloride	4	F	6G	2	13	2.68
		Trichlorofluoromethane	2.2	F	6G	1.3	13	2.68
1/3/17 8:36	59-PW-14-80-NS	Trichlorofluoromethane	2.3	F	6G	1.1	12	2.38
		Carbon Tetrachloride	3.1	F	6G	1.8	12	2.38
		cis-1,2-Dichloroethene	4.9	F	6G	2	12	2.38
11/2/17 13:55	59-PW-15-20-NS	Tetrachloroethene	4	F	6G	1.1	12	2.4
11/2/17 14:23	59-PW-15-60-NS	Chloroform	3	F	6G	1.9	12	2.44
		Tetrachloroethene	3.4	F	6G	1.1	12	2.44
11/1/17 14:26	59-PW-16-20-NS	1,1,1-Trichloroethane	3.9	F	6G	1.4	12	2.48
		Tetrachloroethene	9.8	F	6G	1.1	12	2.48
		Chloroform	4.2	F	6G	1.9	12	2.48
11/1/17 14:41	59-PW-16-30-NS	Tetrachloroethene	3.4	F	6G	1.1	12	2.51
		1,1-Dichloroethene	12	F	6G	1.5	12	2.51
		Isopropanol	15	F	6G	5.5	50	2.51
		Chloroform	2.7	F	6G	2	12	2.51
11/3/17 7:55	59-PW-16-60-NS	Tetrachloroethene	12	F	6G	2.1	24	4.76
		1,1-Dichloroethene	3.3	F	6G	2.9	24	4.76
		Chloroform	16	F	6G	3.7	24	4.76
11/3/17 9:31	59-PW-17-08-NS	Trichloroethene	8.1	F	6G	1.8	12	2.46
		Isopropanol	19	F	6G	5.4	49	2.46
11/3/17 9:50	59-PW-17-20-FD	Toluene	2.8	F	6G	1.4	12	2.32
11/3/17 9:50	59-PW-17-20-NS	Toluene	2.3	F	6G	1.4	12	2.38
		cis-1,2-Dichloroethene	2.2	F	6G	2	12	2.38
11/3/17 10:03	59-PW-17-30-NS	1,1,1-Trichloroethane	4.1	F	6G	1.3	12	2.31
		cis-1,2-Dichloroethene	2.1	F	6G	1.9	12	2.31
		Toluene	1.8	F	6G	1.4	12	2.31
11/2/17 12:35	59-PW-17-60-NS	1,1-Dichloroethene	7.5	F	6G	1.5	12	2.4
		Toluene	4.8	F	6G	1.4	12	2.4
		Chloroform	9.8	F	6G	1.9	12	2.4

	Table	e 2. Qualified Data for	ZUTT Dasell	ne son vapo	•	ontinueu)		
Sample Dat	e Sample Name	Analyte	Result	EPA Flags	Reason Codes	DL	RL	DF
11/3/17 10:28		Tetrachloroethene	4.6	F	6G	1.1	12	2.48
11/5/17 10.20	391 11 17 00 115	m,p-Xylenes	1.6	F	6G	1.5	12	2.48
		Toluene	9.4	F	6G	1.5	12	2.48
		Toluelle	9.4	Г	00	1.5	12	2.40
ACRONYMS								
DF = DL =	dilution factor detection limit							
		4: A						
EPA = FD =	U.S. Environmental Protec	cuon Agency						
	field duplicate							
	normal sample							
RL =	reporting limit							
EPA FLAG								
B =	associated with blank cont	amination						
F =	detected between the RL a							
í =	estimated concentration							
, + =	estimated concentration; p	otential high bias						
U J =		ated RL with potential for false	e negative result					
			e negative result					
REASON COD	Ξ							
1A =	associated with method bla	ank contamination						
2B- =	low matrix spike recovery							
5B- =	low continuing calibration							
5E =	exceeds calibration range	-						
6G =	detected between the RL a	nd DL						

LOCATION	SAMPLE DATE	Sample Name	Sample Code	ANALYTICAL METHOD	ANALYTE	RESULT	EPA FLAGS	UNIT	DL	RL
59-AA-01	1/26/17 16:18	59-AA-01-FD	NS1	TO15SIM	1,1,1-Trichloroethane	0.039	FB	ug/m3	0.022	0.25
59-AA-01	1/26/17 16:18	59-AA-01-NS	NS1	TO15SIM	1,1,1-Trichloroethane	0.044	FB	ug/m3	0.022	0.25
59-AA-02	1/26/17 16:25	59-AA-02-NS	NS1	TO15SIM	1,1,1-Trichloroethane	0.022	FB	ug/m3	0.015	0.17
59-IA-01	1/26/17 16:15	59-IA-01-FD	NS1	TO15SIM	1,1,1-Trichloroethane	0.029	FB	ug/m3	0.024	0.27
59-IA-01	1/26/17 16:15	59-IA-01-NS	NS1	TO15SIM	1,1,1-Trichloroethane	0.043	FB	ug/m3	0.024	0.27
59-IA-02	1/26/17 16:12	59-IA-02-NS	NS1	TO15SIM	1,1,1-Trichloroethane	0.036	FB	ug/m3	0.015	0.17
59-IA-03	1/26/17 16:13	59-IA-03-NS	NS1	TO15SIM	1,1,1-Trichloroethane	0.036	FB	ug/m3	0.015	0.17
59-IA-04	1/26/17 16:14	59-IA-04-NS	NS1	TO15SIM	1,1,1-Trichloroethane	0.069	FB	ug/m3	0.015	0.17
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	1,1,1-Trichloroethane	0		ug/m3	15	61
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	1,1,1-Trichloroethane	0		ug/m3	15	62
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	1,1,1-Trichloroethane	0		ug/m3	14	60
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	1,1,1-Trichloroethane	0		ug/m3	14	58
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	1,1,1-Trichloroethane	0		ug/m3	14	59
59-AA-01	1/26/17 16:18	59-AA-01-FD	NS1	TO15SIM	1,2-Dichloroethane	0.064	FB	ug/m3	0.014	0.19
59-AA-01	1/26/17 16:18	59-AA-01-NS	NS1	TO15SIM	1,2-Dichloroethane	0.06	FB	ug/m3	0.014	0.19
59-AA-02	1/26/17 16:25	59-AA-02-NS	NS1	TO15SIM	1,2-Dichloroethane	0.062	FB	ug/m3	0.0097	0.12
59-IA-01	1/26/17 16:15	59-IA-01-FD	NS1	TO15SIM	1,2-Dichloroethane	0.1	FB	ug/m3	0.015	0.2
59-IA-01	1/26/17 16:15	59-IA-01-NS	NS1	TO15SIM	1,2-Dichloroethane	0.12	FB	ug/m3	0.015	0.2
59-IA-02	1/26/17 16:12	59-IA-02-NS	NS1	TO15SIM	1,2-Dichloroethane	0.096	FB	ug/m3	0.0098	0.13
59-IA-03	1/26/17 16:13	59-IA-03-NS	NS1	TO15SIM	1,2-Dichloroethane	0.095	FB	ug/m3	0.0098	0.13
59-IA-04	1/26/17 16:14	59-IA-04-NS	NS1	TO15SIM	1,2-Dichloroethane	0.096	FB	ug/m3	0.0098	0.13
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	1,2-Dichloroethane	0		ug/m3	14	46
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	1,2-Dichloroethane	0		ug/m3	14	46
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	1,2-Dichloroethane	0		ug/m3	13	45
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	1,2-Dichloroethane	0		ug/m3	13	43
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	1,2-Dichloroethane	0		ug/m3	13	44
59-AA-01	1/26/17 16:18	59-AA-01-FD	NS1	TO15SIM	Carbon Tetrachloride	0.41		ug/m3	0.011	0.29
59-AA-01	1/26/17 16:18	59-AA-01-NS	NS1	TO15SIM	Carbon Tetrachloride	0.43		ug/m3	0.011	0.29
59-AA-02	1/26/17 16:25	59-AA-02-NS	NS1	TO15SIM	Carbon Tetrachloride	0.43		ug/m3	0.0077	0.2
59-IA-01	1/26/17 16:15	59-IA-01-FD	NS1	TO15SIM	Carbon Tetrachloride	0.22	JF	ug/m3	0.012	0.31
59-IA-01	1/26/17 16:15	59-IA-01-NS	NS1	TO15SIM	Carbon Tetrachloride	0.43	JF	ug/m3	0.012	0.31
59-IA-02	1/26/17 16:12	59-IA-02-NS	NS1	TO15SIM	Carbon Tetrachloride	0.39		ug/m3	0.0078	0.2
59-IA-03	1/26/17 16:13	59-IA-03-NS	NS1	TO15SIM	Carbon Tetrachloride	0.42		ug/m3	0.0078	0.2
59-IA-04	1/26/17 16:14	59-IA-04-NS	NS1	TO15SIM	Carbon Tetrachloride	0.43		ug/m3	0.0078	0.2
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	Carbon Tetrachloride	0		ug/m3	17	71
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	Carbon Tetrachloride	0		ug/m3	17	71
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	Carbon Tetrachloride	0		ug/m3	17	70

Table D-1. Indoor Air Results, January 26-27, 2017 B4260, Former Mather AFB

LOCATION	SAMPLE DATE	Sample Name	SAMPLE CODE	ANALYTICAL METHOD	ANALYTE	RESULT	EPA FLAGS	UNIT	DL	RL
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	Carbon Tetrachloride	0		ug/m3	16	67
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	Carbon Tetrachloride	0		ug/m3	17	68
59-AA-01	1/26/17 16:18	59-AA-01-FD	NS1	TO15SIM	Tetrachloroethene	0.04	FB	ug/m3	0.015	0.31
59-AA-01	1/26/17 16:18	59-AA-01-NS	NS1	TO15SIM	Tetrachloroethene	0.032	FB	ug/m3	0.015	0.31
59-AA-02	1/26/17 16:25	59-AA-02-NS	NS1	TO15SIM	Tetrachloroethene	0.033	FB	ug/m3	0.01	0.21
59-IA-01	1/26/17 16:15	59-IA-01-FD	NS1	TO15SIM	Tetrachloroethene	0.061	FB	ug/m3	0.016	0.33
59-IA-01	1/26/17 16:15	59-IA-01-NS	NS1	TO15SIM	Tetrachloroethene	0.05	FB	ug/m3	0.016	0.33
59-IA-02	1/26/17 16:12	59-IA-02-NS	NS1	TO15SIM	Tetrachloroethene	0.054	FB	ug/m3	0.01	0.21
59-IA-03	1/26/17 16:13	59-IA-03-NS	NS1	TO15SIM	Tetrachloroethene	0.053	FB	ug/m3	0.01	0.21
59-IA-04	1/26/17 16:14	59-IA-04-NS	NS1	TO15SIM	Tetrachloroethene	0.052	FB	ug/m3	0.01	0.21
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	Tetrachloroethene	0		ug/m3	25	76
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	Tetrachloroethene	0		ug/m3	25	77
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	Tetrachloroethene	0		ug/m3	24	75
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	Tetrachloroethene	0		ug/m3	23	72
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	Tetrachloroethene	0		ug/m3	24	74
59-AA-01	1/26/17 16:18	59-AA-01-FD	NS1	TO15SIM	trans-1,2-Dichloroethene	0		ug/m3	0.017	0.91
59-AA-01	1/26/17 16:18	59-AA-01-NS	NS1	TO15SIM	trans-1,2-Dichloroethene	0		ug/m3	0.017	0.91
59-AA-02	1/26/17 16:25	59-AA-02-NS	NS1	TO15SIM	trans-1,2-Dichloroethene	0		ug/m3	0.012	0.61
59-IA-01	1/26/17 16:15	59-IA-01-FD	NS1	TO15SIM	trans-1,2-Dichloroethene	0.63	F	ug/m3	0.018	0.97
59-IA-01	1/26/17 16:15	59-IA-01-NS	NS1	TO15SIM	trans-1,2-Dichloroethene	0.68	F	ug/m3	0.018	0.97
59-IA-02	1/26/17 16:12	59-IA-02-NS	NS1	TO15SIM	trans-1,2-Dichloroethene	0.56	F	ug/m3	0.012	0.63
59-IA-03	1/26/17 16:13	59-IA-03-NS	NS1	TO15SIM	trans-1,2-Dichloroethene	0.68		ug/m3	0.012	0.63
59-IA-04	1/26/17 16:14	59-IA-04-NS	NS1	TO15SIM	trans-1,2-Dichloroethene	0.72		ug/m3	0.012	0.63
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	trans-1,2-Dichloroethene	0		ug/m3	16	45
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	trans-1,2-Dichloroethene	0		ug/m3	16	45
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	trans-1,2-Dichloroethene	0		ug/m3	16	44
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	trans-1,2-Dichloroethene	0		ug/m3	15	42
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	trans-1,2-Dichloroethene	0		ug/m3	15	43
59-AA-01	1/26/17 16:18	59-AA-01-FD	NS1	TO15SIM	Trichloroethene	0.028	FB	ug/m3	0.013	0.25
59-AA-01	1/26/17 16:18	59-AA-01-NS	NS1	TO15SIM	Trichloroethene	0.023	FB	ug/m3	0.013	0.25
59-AA-02	1/26/17 16:25	59-AA-02-NS	NS1	TO15SIM	Trichloroethene	0.017	FB	ug/m3	0.0088	0.17
59-IA-01	1/26/17 16:15	59-IA-01-FD	NS1	TO15SIM	Trichloroethene	0.025	FB	ug/m3	0.014	0.26
59-IA-01	1/26/17 16:15	59-IA-01-NS	NS1	TO15SIM	Trichloroethene	0.028	FB	ug/m3	0.014	0.26
59-IA-02	1/26/17 16:12	59-IA-02-NS	NS1	TO15SIM	Trichloroethene	0.026	FB	ug/m3	0.009	0.17
59-IA-03	1/26/17 16:13	59-IA-03-NS	NS1	TO15SIM	Trichloroethene	0.021	FB	ug/m3	0.009	0.17
59-IA-04	1/26/17 16:14	59-IA-04-NS	NS1	TO15SIM	Trichloroethene	0.028	FB	ug/m3	0.009	0.17
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	Trichloroethene	16	F	ug/m3	13	60

Table D-1. Indoor Air Results, January 26-27, 2017 B4260, Former Mather AFB

Table D-1. Indoor Air Results, January 26-27, 2017 B4260, Former Mather AFB

LOCATION	SAMPLE DATE	SAMPLE NAME	SAMPLE CODE	analytical Method	ANALYTE	RESULT	EPA FLAGS	UNIT	DL	RL
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	Trichloroethene	24	F	ug/m3	13	61
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	Trichloroethene	36	F	ug/m3	12	60
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	Trichloroethene	37	F	ug/m3	12	57
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	Trichloroethene	1400		ug/m3	12	58
Leak Testing Resu	ts:									
59-SS-01	1/27/17 8:22	59-SS-01-FD	NS1	TO15	Isopropanol	0		ug/m3	14	110
59-SS-01	1/27/17 8:22	59-SS-01-NS	NS1	TO15	Isopropanol	0		ug/m3	14	110
59-SS-02	1/27/17 9:08	59-SS-02-NS	NS1	TO15	Isopropanol	160		ug/m3	14	110
59-SS-03	1/27/17 9:33	59-SS-03-NS	NS1	TO15	Isopropanol	0		ug/m3	13	100
59-SS-04	1/27/17 8:48	59-SS-04-NS	NS1	TO15	Isopropanol	60	F	ug/m3	14	110

AA = ambient air sample

IA = indoor air sample

SS = sub-slab vapor sample

DL = detection limit

F = detected between the reporting limit and detection limit.

FB = qualified as not detected due to blank contamination; detected between the reporting limit and the detection limit

FD = field duplicate

NS = normal sample

RL = reporting limit

ug/m3 = micrograms per cubic meter

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.4	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	cis-1,2-Dichloroethene	2.3	F	PPBV	2.1	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Isopropanol	10	F	PPBV	5.4	49
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Tetrachloroethene	67		PPBV	1.1	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Trichloroethene	110		PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-10-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Chloroform	2	F	PPBV	1.9	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Isopropanol	0		PPBV	5.4	49
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Tetrachloroethene	26		PPBV	1.1	12
59-PW-05		59-PW-05-30-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Trichloroethene	320		PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-30-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.4	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-05	11/7/2017		NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.9	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-05		59-PW-05-50-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2.1	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Isopropanol	0		PPBV	5.5	50
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Toluene	0		PPBV	1.5	12

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Trichloroethene	18	J+	PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-50-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.4	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Carbon Tetrachloride	4.5	F	PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Chloroform	4.3	F	PPBV	1.9	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	cis-1,2-Dichloroethene	3.2	F	PPBV	2.1	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Isopropanol	0		PPBV	5.4	49
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Tetrachloroethene	23		PPBV	1.1	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Trichloroethene	410		PPBV	1.8	12
59-PW-05	11/7/2017	59-PW-05-70-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Chloroform	0		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Isopropanol	0		PPBV	5.2	48
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Trichloroethene	23		PPBV	1.7	12
59-PW-06	11/7/2017	59-PW-06-11-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-06		59-PW-06-31-NS	NS1	TO15	Isopropanol	0		PPBV	5.3	48

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Trichloroethene	10	В	PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-31-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	1,1-Dichloroethene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Benzene	0		PPBV	1.6	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Isopropanol	0		PPBV	5.2	48
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Toluene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Trichloroethene	11	В	PPBV	1.7	12
59-PW-06	11/7/2017	59-PW-06-51-FD	FD1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Isopropanol	0		PPBV	5.3	48
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Trichloroethene	10	В	PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-51-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	1,1-Dichloroethene	5.2	F	PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Carbon Tetrachloride	67		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Chloroform	2.9	F	PPBV	1.9	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Isopropanol	0		PPBV	5.3	48
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Tetrachloroethene	27		PPBV	1.1	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Trichloroethene	360		PPBV	1.8	12
59-PW-06	11/7/2017	59-PW-06-70-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	1,1,1-Trichloroethane	5	F	PPBV	1.3	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	1,1-Dichloroethene	88		PPBV	1.4	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Chloroform	6.8	F	PPBV	1.9	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	cis-1,2-Dichloroethene	3.4	F	PPBV	2	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Isopropanol	0		PPBV	5.2	48
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Tetrachloroethene	16		PPBV	1.1	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Trichloroethene	7100		PPBV	1.7	12
59-PW-07	11/7/2017	59-PW-07-10-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	1,1-Dichloroethene	11	F	PPBV	1.4	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Carbon Tetrachloride	4.6	F	PPBV	1.7	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.4	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Chloroform	3.3	F	PPBV	1.8	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	cis-1,2-Dichloroethene	3.6	F	PPBV	1.9	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Isopropanol	0		PPBV	5.1	46
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.4	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Tetrachloroethene	38		PPBV	1	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.2	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Trichloroethene	1100		PPBV	1.7	12
59-PW-08	11/7/2017	59-PW-08-10-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	1,1,1-Trichloroethane	44		PPBV	1.4	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	1,1-Dichloroethene	380		PPBV	1.5	13

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Benzene	0		PPBV	1.7	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.9	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.6	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Chloroform	8.6	F	PPBV	2	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	cis-1,2-Dichloroethene	52		PPBV	2.1	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Isopropanol	0		PPBV	5.5	50
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.6	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Tetrachloroethene	36		PPBV	1.1	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Toluene	0		PPBV	1.5	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	trans-1,2-Dichloroethene	31		PPBV	3.5	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Trichloroethene	24000		PPBV	1.8	13
59-PW-09A	11/7/2017	59-PW-09A-10-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	13
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	1,1,1-Trichloroethane	85		PPBV	2.3	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	1,1-Dichloroethene	490		PPBV	2.5	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Benzene	0		PPBV	2.9	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Carbon Tetrachloride	0		PPBV	3.1	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Chlorobenzene	0		PPBV	2.6	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Chloroform	8	F	PPBV	3.2	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	cis-1,2-Dichloroethene	51		PPBV	3.5	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Isopropanol	29	F	PPBV	9.2	83
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	m,p-Xylenes	0		PPBV	2.6	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Tetrachloroethene	47		PPBV	1.9	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Toluene	0		PPBV	2.4	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	trans-1,2-Dichloroethene	28		PPBV	5.7	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Trichloroethene	26000		PPBV	3	21
59-PW-09B	11/7/2017	59-PW-09B-20-FD	FD1	TO15	Trichlorofluoromethane	0		PPBV	2	21
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	1,1,1-Trichloroethane	85		PPBV	1.4	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	1,1-Dichloroethene	520		PPBV	1.5	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Benzene	0		PPBV	1.7	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.9	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Chlorobenzene	1.8	F	PPBV	1.6	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Chloroform	7.9	F	PPBV	2	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	cis-1,2-Dichloroethene	54		PPBV	2.1	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Isopropanol	6.4	F	PPBV	5.5	50
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.6	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Tetrachloroethene	46		PPBV	1.1	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Toluene	0		PPBV	1.5	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	trans-1,2-Dichloroethene	25		PPBV	3.5	13
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	TO15	Trichloroethene	26000		PPBV	1.8	13

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	5 UNIT	DL	RL
59-PW-09B	11/7/2017	59-PW-09B-20-NS	NS1	T015	Trichlorofluoromethane	0		PPBV	1.2	13
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Isopropanol	30000	J	PPBV	5.4	49
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Toluene	3	F	PPBV	1.4	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Trichloroethene	5.6	F	PPBV	1.8	12
59-PW-10A	11/7/2017	59-PW-10A-08-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.4	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Chloroform	0		PPBV	1.8	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Isopropanol	97		PPBV	5.2	48
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Tetrachloroethene	5.8	F	PPBV	1.1	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Trichloroethene	3.9	F	PPBV	1.7	12
59-PW-10B	11/7/2017	59-PW-10B-20-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	1,1-Dichloroethene	0		PPBV	1.4	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Benzene	0		PPBV	1.6	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Chloroform	0		PPBV	1.8	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Isopropanol	0		PPBV	5.2	47
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	m,p-Xylenes	3.8	F	PPBV	1.5	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Tetrachloroethene	35		PPBV	1.1	12

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Toluene	3.2	F	PPBV	1.4	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Trichloroethene	33		PPBV	1.7	12
59-PW-11A	11/8/2017	59-PW-11A-08-FD	FD1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.4	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Isopropanol	5.3	F	PPBV	5.2	48
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Tetrachloroethene	35		PPBV	1.1	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Trichloroethene	31		PPBV	1.7	12
59-PW-11A	11/8/2017	59-PW-11A-08-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	1,1,1-Trichloroethane	4.1	F	PPBV	1.3	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	1,1-Dichloroethene	36		PPBV	1.4	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Chloroform	3.2	F	PPBV	1.8	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Isopropanol	29	F	PPBV	5.2	47
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Tetrachloroethene	280		PPBV	1.1	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.2	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Trichloroethene	1400		PPBV	1.7	12
59-PW-11B	11/7/2017	59-PW-11B-20-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	270	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	1,1-Dichloroethene	3900		PPBV	300	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Benzene	0		PPBV	330	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	360	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Chlorobenzene	0		PPBV	300	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Chloroform	500	F	PPBV	380	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	cis-1,2-Dichloroethene	37000		PPBV	410	2400

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Isopropanol	8900	F	PPBV	1100	9700
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	m,p-Xylenes	0		PPBV	300	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Tetrachloroethene	320	F	PPBV	220	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Toluene	0		PPBV	290	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	trans-1,2-Dichloroethene	7200		PPBV	670	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Trichloroethene	2400000		PPBV	350	2400
59-PW-12A	11/7/2017	59-PW-12A-08-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	230	2400
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15	1,1,1-Trichloroethane	1200		PPBV	22	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 1,1-Dichloroethene		3500		PPBV	25	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15	Benzene	0		PPBV	28	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	31	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 Chlorobenzene		0		PPBV	25	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 Chloroform		0		PPBV	32	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 cis-1,2-Dichloroethene		780		PPBV	34	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 Isopropanol		0		PPBV	90	820
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15				PPBV	25	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 Tetrachloroethene		66	F	PPBV	18	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 Toluene		0		PPBV	24	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15 trans-1,2-Dichloroethene		180 270000	F	PPBV	56	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15				PPBV	30	200
59-PW-12B	11/7/2017	59-PW-12B-20-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	20	200
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Benzene	1.7	F	PPBV	1.7	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Isopropanol	25000	J	PPBV	5.4	49
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Tetrachloroethene	0 0		PPBV	1.1	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1		TO15 Toluene			PPBV	1.4	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	trans-1,2-Dichloroethene	0 1.8		PPBV	3.4	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1		TO15 Trichloroethene		F	PPBV	1.8	12
59-PW-13A	11/2/2017	59-PW-13A-08-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	1,1,1-Trichloroethane	6.6	F	PPBV	1.4	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	1,1-Dichloroethene	29		PPBV	1.5	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12

	SAMPLE		SAMPLE	ANALYTICAL		EPA				
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Chloroform	5.4	F	PPBV	1.9	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	cis-1,2-Dichloroethene	3.9	F	PPBV	2.1	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Isopropanol	140		PPBV	5.4	49
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Tetrachloroethene	18		PPBV	1.1	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Trichloroethene	530		PPBV	1.8	12
59-PW-13B	11/2/2017	59-PW-13B-20-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	24	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	26	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	Benzene	0		PPBV	30	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	32	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	Chlorobenzene	0		PPBV	26	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15 Chloroform		0		PPBV	33	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15 cis-1,2-Dichloroethene		0		PPBV	36	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15 Isopropanol		190000		PPBV	94	860
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15 m,p-Xylenes		0		PPBV	26	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	1 5			PPBV	19	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	Toluene	0		PPBV	25	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	59	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	Trichloroethene	100	F	PPBV	31	210
59-PW-14	11/1/2017	59-PW-14-30-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	20	210
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	1,1,1-Trichloroethane	0		PPBV	1.5	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	1,1-Dichloroethene	240		PPBV	1.7	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Benzene	0		PPBV	1.9	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Carbon Tetrachloride	3.6	F	PPBV	2.1	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Chlorobenzene	1.8	F	PPBV	1.7	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Chloroform	23		PPBV	2.1	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	cis-1,2-Dichloroethene	9.3	F	PPBV	2.3	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15 Isopropanol		16000		PPBV	6	55
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	m,p-Xylenes	0		PPBV	1.7	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Tetrachloroethene	34		PPBV	1.2	14
59-PW-14			FD1	TO15	Toluene	0		PPBV	1.6	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.8	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Trichloroethene	8000		PPBV	2	14
59-PW-14	11/1/2017	59-PW-14-60-FD	FD1	TO15	Trichlorofluoromethane	2.9	F	PPBV	1.3	14
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.5	13

	SAMPLE		SAMPLE	ANALYTICAL		EPA				
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	1,1-Dichloroethene	240		PPBV	1.6	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Benzene	0		PPBV	1.8	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Carbon Tetrachloride	4	F	PPBV	2	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.7	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Chloroform	23		PPBV	2.1	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	cis-1,2-Dichloroethene	7.4	F	PPBV	2.2	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Isopropanol	17000		PPBV	5.9	54
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.7	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Tetrachloroethene	33		PPBV	1.2	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Toluene	0		PPBV	1.6	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.7	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Trichloroethene	8000		PPBV	2	13
59-PW-14	11/1/2017	59-PW-14-60-NS	NS1	TO15	Trichlorofluoromethane	2.2	F	PPBV	1.3	13
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	1,1-Dichloroethene	16		PPBV	1.4	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15 Carbon Tetrachloride		3.1	F	PPBV	1.8	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15 Chlorobenzene		0		PPBV	1.5	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15 Chloroform		21		PPBV	1.8	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15 cis-1,2-Dichloroethene		4.9	F	PPBV	2	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	Isopropanol	190		PPBV	5.2	48
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	Tetrachloroethene	49		PPBV	1.1	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	Trichloroethene	1400		PPBV	1.7	12
59-PW-14	11/3/2017	59-PW-14-80-NS	NS1	TO15	Trichlorofluoromethane	2.3	F	PPBV	1.1	12
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	6.9	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	7.7	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Benzene	0		PPBV	8.7	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	9.4	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Chlorobenzene	0		PPBV	7.8	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Chloroform	0		PPBV	9.8	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	10	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Isopropanol	58000		PPBV	28	250
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	m,p-Xylenes	0		PPBV	7.8	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Tetrachloroethene	0		PPBV	5.7	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Toluene	0		PPBV	7.4	63
59-PW-15	11/0/0017	59-PW-15-08-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	17	63

	SAMPLE		SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Trichloroethene	0		PPBV	9.2	63
59-PW-15	11/2/2017	59-PW-15-08-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	6	63
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	1,1-Dichloroethene	50		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Isopropanol	740		PPBV	5.3	48
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Tetrachloroethene	4	F	PPBV	1.1	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15 trans-1,2-Dichloroethene		0		PPBV	3.3	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15	Trichloroethene	590		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-20-NS	NS1	TO15				PPBV	1.2	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15 1,1,1-Trichloroethane		0		PPBV	1.3	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15 1,1-Dichloroethene		0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15				PPBV	1.7	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Isopropanol	620		PPBV	5.3	49
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Trichloroethene	17		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-30-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15				PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Chloroform	3	F	PPBV	1.9	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Isopropanol	9100		PPBV	5.4	49
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12

	SAMPLE		SAMPLE	ANALYTICAL		EPA				
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Tetrachloroethene	3.4	F	PPBV	1.1	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Trichloroethene	470		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-60-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Isopropanol	100		PPBV	5.3	49
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15 Toluene		0		PPBV	1.4	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15 trans-1,2-Dichloroethene		0		PPBV	3.4	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15 Trichloroethene		70		PPBV	1.8	12
59-PW-15	11/2/2017	59-PW-15-80-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	1,1,1-Trichloroethane	3.9	F	PPBV	1.4	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	1,1-Dichloroethene	66		PPBV	1.5	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.9	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Chloroform	4.2	F	PPBV	1.9	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2.1	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Isopropanol	120		PPBV	5.4	50
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Tetrachloroethene	9.8	F	PPBV	1.1	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Toluene	0		PPBV	1.5	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Trichloroethene	1400		PPBV	1.8	12
59-PW-16	11/1/2017	59-PW-16-20-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.4	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	1,1-Dichloroethene	12	F	PPBV	1.5	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.9	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.6	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15 Chloroform		2.7	F	PPBV	2	12

			SAMPLE	ANALYTICAL			EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2.1	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Isopropanol	15	F	PPBV	5.5	50
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.6	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Tetrachloroethene	3.4	F	PPBV	1.1	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Toluene	0		PPBV	1.5	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.5	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Trichloroethene	370		PPBV	1.8	12
59-PW-16	11/1/2017	59-PW-16-30-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	2.6	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	1,1-Dichloroethene	3.3	F	PPBV	2.9	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	Benzene	0		PPBV	3.3	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	3.6	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15 Chlorobenzene		0		PPBV	3	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15 Chloroform		16	F	PPBV	3.7	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	4	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15 Isopropanol		13000		PPBV	10	95
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15 m,p-Xylenes		0		PPBV	3	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15			F	PPBV	2.1	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	Toluene	0		PPBV	2.8	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	6.6	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	Trichloroethene	1200		PPBV	3.5	24
59-PW-16	11/3/2017	59-PW-16-60-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	2.3	24
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Isopropanol	310		PPBV	5.3	48
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Trichloroethene	39		PPBV	1.8	12
59-PW-16	11/3/2017	59-PW-16-80-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Benzene	0		PPBV	1.7	12

	SAMPLE		SAMPLE				EPA			
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2.1	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Isopropanol	19	F	PPBV	5.4	49
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Tetrachloroethene	0		PPBV	1.1	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Toluene	0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.4	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Trichloroethene	8.1	F	PPBV	1.8	12
59-PW-17	11/3/2017	59-PW-17-08-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	1,1,1-Trichloroethane	31		PPBV	1.3	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15 1,1-Dichloroethene		130		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Benzene	0		PPBV	1.6	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Carbon Tetrachloride	0		PPBV	1.7	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15 Chlorobenzene		0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15 Chloroform		0		PPBV	1.8	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15 cis-1,2-Dichloroethene		0		PPBV	1.9	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Isopropanol	190		PPBV	5.1	46
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	m,p-Xylenes	0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Tetrachloroethene	13		PPBV	1	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Toluene	2.8	F	PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.2	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Trichloroethene	5300		PPBV	1.7	12
59-PW-17	11/3/2017	59-PW-17-20-FD	FD1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	1,1,1-Trichloroethane	31		PPBV	1.3	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	1,1-Dichloroethene	130		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.8	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Chloroform	0		PPBV	1.8	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	cis-1,2-Dichloroethene	2.2	F	PPBV	2	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Isopropanol	180		PPBV	5.2	48
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Tetrachloroethene	13		PPBV	1.1	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Toluene	2.3	F	PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15	Trichloroethene	5500		PPBV	1.7	12
59-PW-17	11/3/2017	59-PW-17-20-NS	NS1	TO15				PPBV	1.1	12

	SAMPLE		SAMPLE							
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS	UNIT	DL	RL
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	1,1,1-Trichloroethane	4.1	F	PPBV	1.3	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	1,1-Dichloroethene	55		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Benzene	0		PPBV	1.6	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.7	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Chloroform	12		PPBV	1.8	12
59-PW-17	11/3/2017		NS1	TO15	cis-1,2-Dichloroethene	2.1	F	PPBV	1.9	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Isopropanol	69		PPBV	5.1	46
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Tetrachloroethene	38		PPBV	1	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Toluene	1.8	F	PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.2	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Trichloroethene	3300		PPBV	1.7	12
59-PW-17	11/3/2017	59-PW-17-30-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.1	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.3	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15 1,1-Dichloroethene		7.5	F	PPBV	1.5	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15 Benzene		0		PPBV	1.6	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15				PPBV	1.8	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15			F	PPBV	1.9	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	Isopropanol	540		PPBV	5.3	48
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	m,p-Xylenes	0		PPBV	1.5	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	Tetrachloroethene	14		PPBV	1.1	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	Toluene	4.8	F	PPBV	1.4	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	trans-1,2-Dichloroethene	0		PPBV	3.3	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	Trichloroethene	1400		PPBV	1.8	12
59-PW-17	11/2/2017	59-PW-17-60-NS	NS1	TO15	Trichlorofluoromethane	0		PPBV	1.2	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	1,1,1-Trichloroethane	0		PPBV	1.4	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	1,1-Dichloroethene	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Benzene	0		PPBV	1.7	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Carbon Tetrachloride	0		PPBV	1.9	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Chlorobenzene	0		PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Chloroform	0		PPBV	1.9	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	cis-1,2-Dichloroethene	0		PPBV	2.1	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Isopropanol	5800		PPBV	5.4	50
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	m,p-Xylenes	1.6	F	PPBV	1.5	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Tetrachloroethene	4.6	F	PPBV	1.1	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Toluene	9.4	F	PPBV	1.5	12

	SAMPLE		SAMPLE	ANALYTICAL			EPA		
LOCATION	DATE	SAMPLE NAME	CODE	METHOD	ANALYTE	RESULT	FLAGS UNIT	DL	RL
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	T015	trans-1,2-Dichloroethene	0	PPBV	3.4	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Trichloroethene	50	PPBV	1.8	12
59-PW-17	11/3/2017	59-PW-17-80-NS	NS1	TO15	Trichlorofluoromethane	0	PPBV	1.2	12

Note: Only VOC that were detected in at least one well are included in this table.

DL = detection limit FD = field duplicate sample NS = normal sample ppbv = parts per million by volume RL = reporting limit

Table D-3. Comparison of TCE and Isopropanol Concentration Data in Soil VaporB4260, Former Mather AFB, Baseline Soil Vapor Sampling Event

					TRICHLOROETHENE DATA (ppbv)			ISOPRO	PANOL D	ATA (ppb	v)	SHROUD	PID DATA	L	eak Test Criteri	on	
																[IPA in Lab	
																Sample]	
	Sample														10% of	-	ls
	Depth												Shroud	Shroud	Shroud IPA	[10% of	Sample
	(feet	SAMPLE		SAMPLE	TCE	EPA	TCE	TCE	IPA	EPA	IPA	IPA	PID Conc	IPA Conc	Conc	Shroud Conc]	Potentially
LOCATION	bgs)	DATE	SAMPLE NAME	CODE	RESULT	FLAGS	DL	RL	RESULT	FLAGS	DL	RL	(ppmv)	(ppbv)	(ppbv)	(ppbv)	Biased Low?
59-PW-05	10-20	11/7/2017	59-PW-05-10-NS	NS1	110		1.8	12	10	F	5.4	49	no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-05	30-40	11/7/2017	59-PW-05-30-NS	NS1	320		1.8	12	0		5.4	49	no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-05	50-60	11/7/2017	59-PW-05-50-NS	NS1	18	J+	1.8	12	0		5.5	50	no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-05	70-90	11/7/2017	59-PW-05-70-NS	NS1	410		1.8	12	0		5.4	49	no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-06	11-21	11/7/2017	59-PW-06-11-NS	NS1	23		1.7	12	0		5.2	48	no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-06	31-41	11/7/2017	59-PW-06-31-NS	NS1	10	В	1.8	12	0		5.3		no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-06	51-61	11/7/2017	59-PW-06-51-FD	FD1	11	В	1.7	12	0		5.2		no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-06	51-61		59-PW-06-51-NS	NS1	10	В	1.8	12	0		5.3		no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-06	70-90		59-PW-06-70-NS	NS1	360		1.8	12	0		5.3		no shroud	no shroud	no shroud	no shroud	no shroud
59-PW-07	10-20		59-PW-07-10-NS	NS1	7,100		1.7	12	0		5.2	48		282,000	28,200	(28,200)	No
59-PW-08	10-20		59-PW-08-10-NS	NS1	1,100		1.7	12	0		5.1	46	26.2	157,200	15,720	(15,720)	No
59-PW-09A	10-11		59-PW-09A-10-NS	NS1	24,000		1.8	13	0		5.5	50		491,400	49,140	(49,140)	No
59-PW-09B	20-21		59-PW-09B-20-FD	FD1	26,000		3	21	29	F	9.2	83		328,800	32,880	(32,851)	No
59-PW-09B	20-21		59-PW-09B-20-NS	NS1	26,000		1.8	13	6.4	F	5.5	50		328,800	32,880	(32,874)	No
59-PW-10A	8-10		59-PW-10A-08-NS	NS1	5.6	F	1.8	12	30,000	J	5.4	49		231,000	23,100	6,900	Yes
59-PW-10B	20-22		59-PW-10B-20-NS	NS1	3.9	F	1.7	12	97		5.2	48		189,000	18,900	(18,803)	No
59-PW-11A	8-10		59-PW-11A-08-FD	FD1	33		1.7	12	0		5.2	47		75,000	7,500	(7,500)	No
59-PW-11A	8-10		59-PW-11A-08-NS	NS1	31		1.7	12	5.3	F	5.2	48	12.5	75,000	7,500	(7,495)	No
59-PW-11B	20-22		59-PW-11B-20-NS	NS1	1,400		1.7	12	29	F	5.2	47	-	60,000	6,000	(5,971)	No
59-PW-12A	8-10		59-PW-12A-08-NS	NS1	2,400,000		350	2400	8,900	F	1100	9700	185	1,110,000	111,000	(102,100)	No
59-PW-12B	20-22		59-PW-12B-20-NS	NS1	270,000	-	30	200	0		90	820	813	4,878,000	487,800	(487,800)	No
59-PW-13A	8-10		59-PW-13A-08-NS	NS1	1.8	F	1.8	12	25,000	J	5.4	49	43	258,000	25,800	(800)	No
59-PW-13B	20-22		59-PW-13B-20-NS	NS1	530	-	1.8	12	140		5.4	49		168,000	16,800	(16,660)	No
59-PW-14	30-32		59-PW-14-30-NS	NS1	100	F	31	210	190,000		94	860	60	360,000	36,000	154,000	Yes
59-PW-14	60-62		59-PW-14-60-FD	FD1	8,000		2	14	16,000		6	55	290	1,740,000	174,000	(158,000)	No
59-PW-14	60-62		59-PW-14-60-NS	NS1	8,000		2	13	17,000		5.9	54	290	1,740,000	174,000	(157,000)	No
59-PW-14	80-82		59-PW-14-80-NS	NS1	1,400		1.7	12	190		5.2	48		216,000	21,600	(21,410)	No
59-PW-15	8-10		59-PW-15-08-NS	NS1	0		9.2	63	58,000		28	250	100	600,000	60,000	(2,000)	No
59-PW-15	20-22		59-PW-15-20-NS	NS1	590		1.8	12	740		5.3 E 2	48	34	204,000	20,400	(19,660)	No
59-PW-15 59-PW-15	30-32 60-62		59-PW-15-30-NS 59-PW-15-60-NS	NS1	17 470		1.8 1.8	12 12	620 9,100		5.3 5.4	49 49	32 36	192,000 216,000	19,200	(18,580)	No No
				NS1							5.4 5.3			,	21,600	(12,500)	
59-PW-15	80-82		59-PW-15-80-NS	NS1	70 NS		1.8	12	100 NS		5.3	49	38	228,000	22,800	(22,700)	No
59-PW-16 59-PW-16	8-10 20.22		59-PW-16-10-NS 59-PW-16-20-NS	NS1 NS1	NS 1,400		1.8	10	NS 120		5.4	50	40	NS 240.000	NS	NS (22.990)	NS No
59-PW-16 59-PW-16	20-22 30-32		59-PW-16-20-NS 59-PW-16-30-NS	NST NST	370		1.8 1.8	12 12	120	F	5.4 5.5	50 50		240,000 264,000	24,000 26,400	(23,880) (26,385)	NO
07-FVV-10	J0-3∠	11/1/201/	07-FVV-10-3U-INS	1021	370		1.0	12	10	F	5.5	50	44	204,000	20,400	(20,385)	INU

Table D-3. Comparison of TCE and Isopropanol Concentration Data in Soil Vapor B4260, Former Mather AFB, Baseline Soil Vapor Sampling Event

					TRICHLOROETHENE DATA (ppbv)				ISOPRO	PANOL D/	ATA (ppb	v)	SHROUD PID DATA		L	eak Test Criteri	on
																[IPA in Lab	
																Sample]	
	Sample														10% of	-	ls
	Depth												Shroud	Shroud	Shroud IPA	[10% of	Sample
	(feet	SAMPLE		SAMPLE	TCE	EPA	TCE	TCE	IPA	EPA	IPA	IPA	PID Conc	IPA Conc	Conc	Shroud Conc]	Potentially
LOCATION	bgs)	DATE	SAMPLE NAME	CODE	RESULT	FLAGS	DL	RL	RESULT	FLAGS	DL	RL	(ppmv)	(ppbv)	(ppbv)	(ppbv)	Biased Low?
59-PW-16	60-62	11/3/2017	59-PW-16-60-NS	NS1	1,200		3.5	24	13,000		10	95	87	522,000	52,200	(39,200)	No
59-PW-16	80-82	11/3/2017	59-PW-16-80-NS	NS1	39		1.8	12	310		5.3	48	15	90,000	9,000	(8,690)	No
59-PW-17	8-10	11/3/2017	59-PW-17-08-NS	NS1	8.1	F	1.8	12	19	F	5.4	49	28	168,000	16,800	(16,781)	No
59-PW-17	20-22	11/3/2017	59-PW-17-20-FD	FD1	5,300		1.7	12	190		5.1	46	42	252,000	25,200	(25,010)	No
59-PW-17	20-22	11/3/2017	59-PW-17-20-NS	NS1	5,500		1.7	12	180		5.2	48	42	252,000	25,200	(25,020)	No
59-PW-17	30-32	11/3/2017	59-PW-17-30-NS	NS1	3,300		1.7	12	69		5.1	46	38	228,000	22,800	(22,731)	No
59-PW-17	60-62	11/2/2017	59-PW-17-60-NS	NS1	1,400		1.8	12	540		5.3	48	38	228,000	22,800	(22,260)	No
59-PW-17	80-82	11/3/2017	59-PW-17-80-NS	NS1	50		1.8	12	5,800		5.4	50	107	642,000	64,200	(58,400)	No

B = qualified as not detected due to blank contamination

bgs = below ground surface

DL = detection limit

F = detected between the reporting limit and detection limit

FD = field duplicate

IPA = isopropanol

J = estimated concentration

J+ = estimated concentration, biased high

NS = normal sample

PID = photoionization detector

ppbv = parts per million by volume

ppmv = parts per million by volume

RL = reporting limit

APPENDIX E

VLEACH Modeling

TABLE E-1: TCE Soil Gas Data and Polygons for VLEACH Modeling Former Mather Air Force Base Site B4260 Evaluation of Potential Impacts to Groundwater to Assess the Need for SVE

Polygor	olygon No. 1		1 2 3		4 5		6		7		Total								
Polygon Area (ft ²)		12,240				7,102		10,919		9,830		8,725		11,196		70,483		ft ²	
Polygon % area		17%		15%		10%		15%		14%		12%		16%		100%			
		8-10,								 								ł	
Well(s) and screen depths		59-PW-12; 59-PW-14	20-22, 30-32, 60-62, 80-82	59-PW-09	10-11, 20-21	59-PW-11	8-10, 20-22	59-PW-17	8-10, 20-22, 30-32, 60-62, 80-82	59-PW-16	8-10, 20-22, 30-32, 60-62, 80-82	59-PW-15	9-11, 20-22, 30-32, 60-62, 80-82	59-PW-07	10-20		Combined (all polygons))
Cell	Depth (ft bgs)	Soil Gas Conc. (ppbv)	Equivalent Soil Conc. (ug/kg)	Soil Gas Conc. (ppbv)	Equivalent Soil Conc. (ug/kg)	Soil Gas Conc. (ppbv)	Equivalent Soil Conc. (ug/kg)	Soil Gas Conc. (ppbv)	Equivalent Soil Conc. (ug/kg)	Weighted Average conc. (ppbv)	Residual Mass (lbs)	MCL Equiv. (ppbv)	Weighted Average conc. (ug/kg)						
1	5	2,400,000	14,078	24,000	140.8	33	0.19	8.1	0.05	0	0.00	0	0.00	7,100	41.6	421,479	78.83	350	2,472
2	10	2,400,000	14,078	24,000	140.8	33	0.19	8.1	0.05	0	0.00	0	0.00	7,100	41.6	421,479	78.83	350	2,472
3	15	2,400,000	14,078	24,000	140.8	33	0.19	8.1	0.05	0	0.00	0	0.00	7,100	41.6	421,479	78.83	350	2,472
4	20	2,400,000	14,078	24,000	140.8	33	0.19	8.1	0.05	0	0.00	0	0.00	7,100	41.6	421,479	78.83	350	2,472
5	25	270,000	1,584	26,000	153	1400	8.21	5,500	32.3	1,400	8.21	590	3.46	7,100	41.6	53,140	9.94	350	311.7
6	30	270,000	1,584	26,000	153	1400	8.21	5,500	32.3	1,400	8.21	590	3.46	7,100	41.6	53,140	9.94	350	311.7
7	35	13,800	80.95	26,000	153	1400	8.21	3,300	19.4	370	2.2	17	0.10	7,100	41.6	8,093	1.51	350	47.5
8	40	13,800	80.95	26,000	153	1400	8.21	3,300	19.4	370	2.2	17	0.10	7,100	41.6	8,093	1.51	350	47.5
9	45	13,800	80.95	26,000	153	1400	8.21	3,300	19.4	370	2.2	17	0.10	7,100	41.6	8,093	1.51	350	47.5
10	50	13,800	80.95	26,000	153	1400	8.21	3,300	19.4	370	2.2	17	0.10	7,100	41.6	8,093	1.51	350	47.5
11	55	13,800	80.95	26,000	153	1400	8.21	3,300	19.4	370	2.2	17	0.10	7,100	41.6	8,093	1.51	350	47.5
12	60	13,800	80.95	26,000	153	1400	8.21	3,300	19.4	370	2.2	17	0.10	7,100	41.6	8,093	1.51	350	47.5
13	65	8,000	46.93	26,000	153	1400	8.21	1,400	8.2	1,200	7.0	470	2.8	7,100	41.6	6,963	1.30	350	40.8
14	70	8,000	46.93	26,000	153	1400	8.21	1,400	8.2	1,200	7.0	470	2.8	7,100	41.6	6,963	1.30	350	40.8
15	75	8,000	46.93	26,000	153	1400	8.21	1,400	8.2	1,200	7.0	470	2.8	7,100	41.6	6,963	1.30	350	40.8
16	80	8,000	46.93	26,000	153	1400	8.21	1,400	8.2	1,200	7.0	470	2.8	7,100	41.6	6,963	1.30	350	40.8
17	85	1,400	8.21	26,000	153	1400	8.21	50	0.29	39	0.23	70	0.41	7,100	41.6	5,396	1.01	350	31.7
18	90	1,400	8.21	26,000	153	1400	8.21	50	0.29	39	0.23	70	0.41	7,100	41.6	5,396	1.01	350	31.7
19	95	1,400	8.21	26,000	153	1400	8.21	50	0.29	39	0.23	70	0.41	7,100	41.6	5,396	1.01	350	31.7
20	100	1,400	8.21	26,000	153	1400	8.21	50	0.29	39	0.23	70	0.41	7,100	41.6	5,396	1.01	350	31.7
A۱	/erage	513,020	3,009	25,600	150	1,127	6.61	1,832	10.7	499	2.93	172	1.01	7,100	41.6	94,510			554
Resid	lual Mass																		[VLEACH
	(lbs)	333.3		14.23		0.42		1.06		0.26		0.08		4.22			353.5		input]
Total	Mass (lbs)							353	3.5										

KEY

Highlighted cells denote screen interval (sample depth)

Screen interval - No soil vapor data collected - water table rebounded too quickly to collect soil gas sample. Value is calculated value based on perched water concentration.
 Leak test results indicate soil vapor concentration is potentially biased low; value is calculated based on perched water concentration.
 Bold Cells denote concentrations exceeding the MCL equivalent of 350 ppbv.

All concentrations shown in parts per billion by volume (ppbv). Data is most recent soil gas results at each well thru 2014 with data collected at select wells in 2015. Sample concentration extended downward to next sample depth or GW. Shallowest sample data extended to surface.

Equations:

Mass (lbs) = 2.205*Pgas*Cgas*Vs*Y*[(Koc*Pa*TOC/H)+(PORw/H)+PORa]*10e-12 Weighted Avg Conc (ug/kg) = 0.001*Pgas*Cgas*[(Koc*Pa*TOC/H)+(PORw/H)+PORa)]/Pa

Pgas = Contaminant gas density (ng/nL) = Molecular wt (MW)/24.055 to convert from ppbv to ug/L

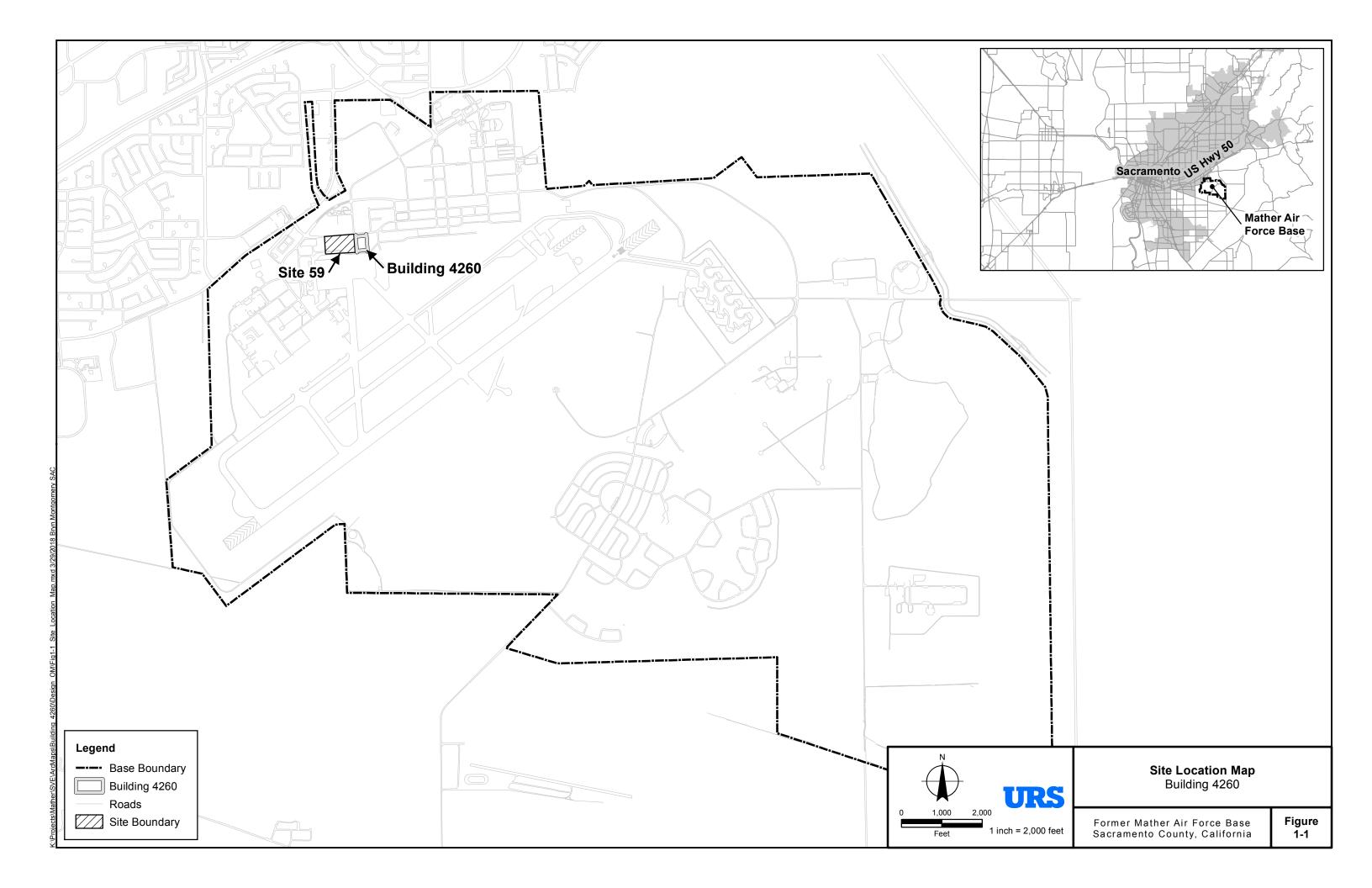
Cgas = Avg. contaminant soil gas concentration (nL/L=ppbv)

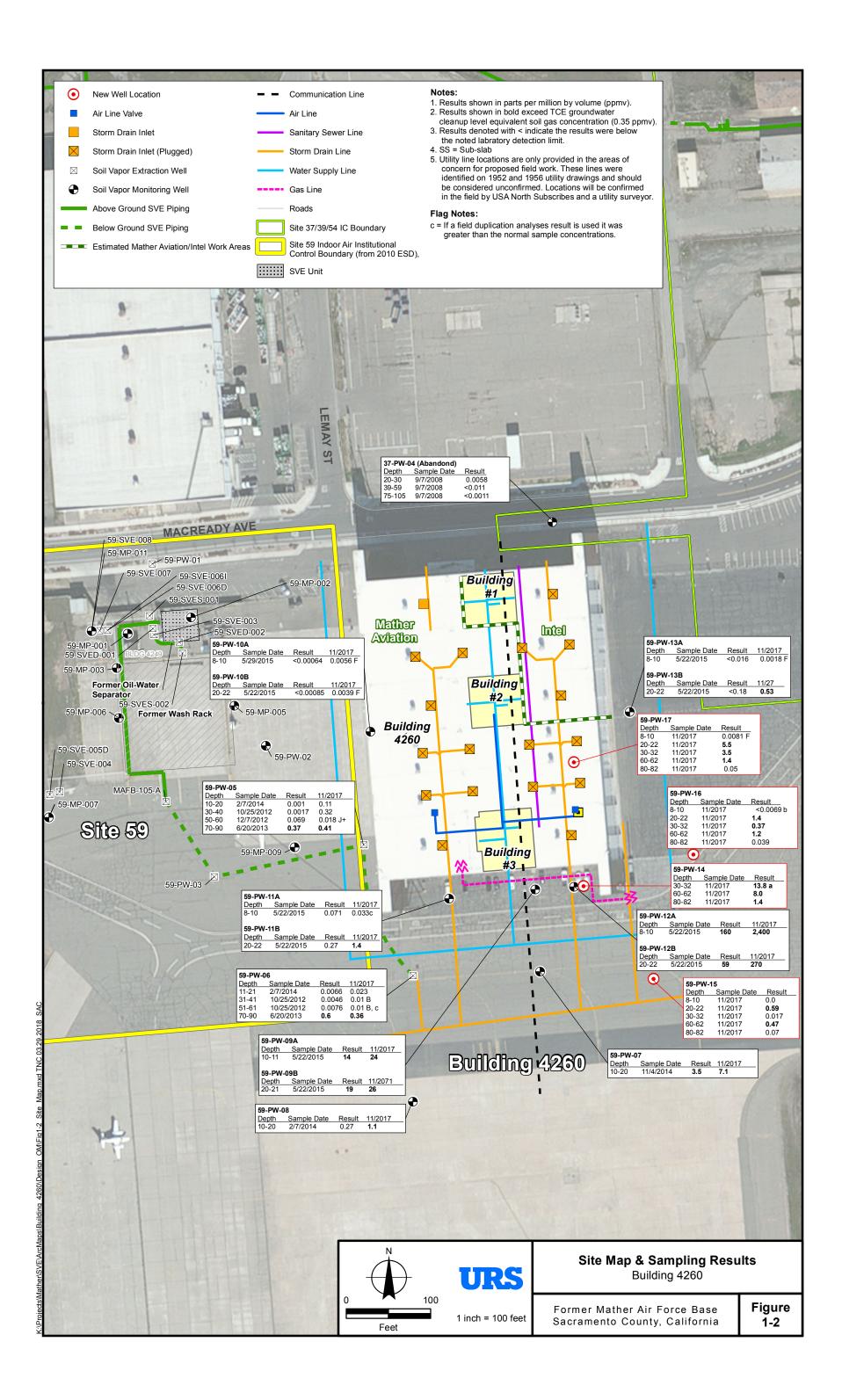
Vs =Contaminated soil volume (ft3)

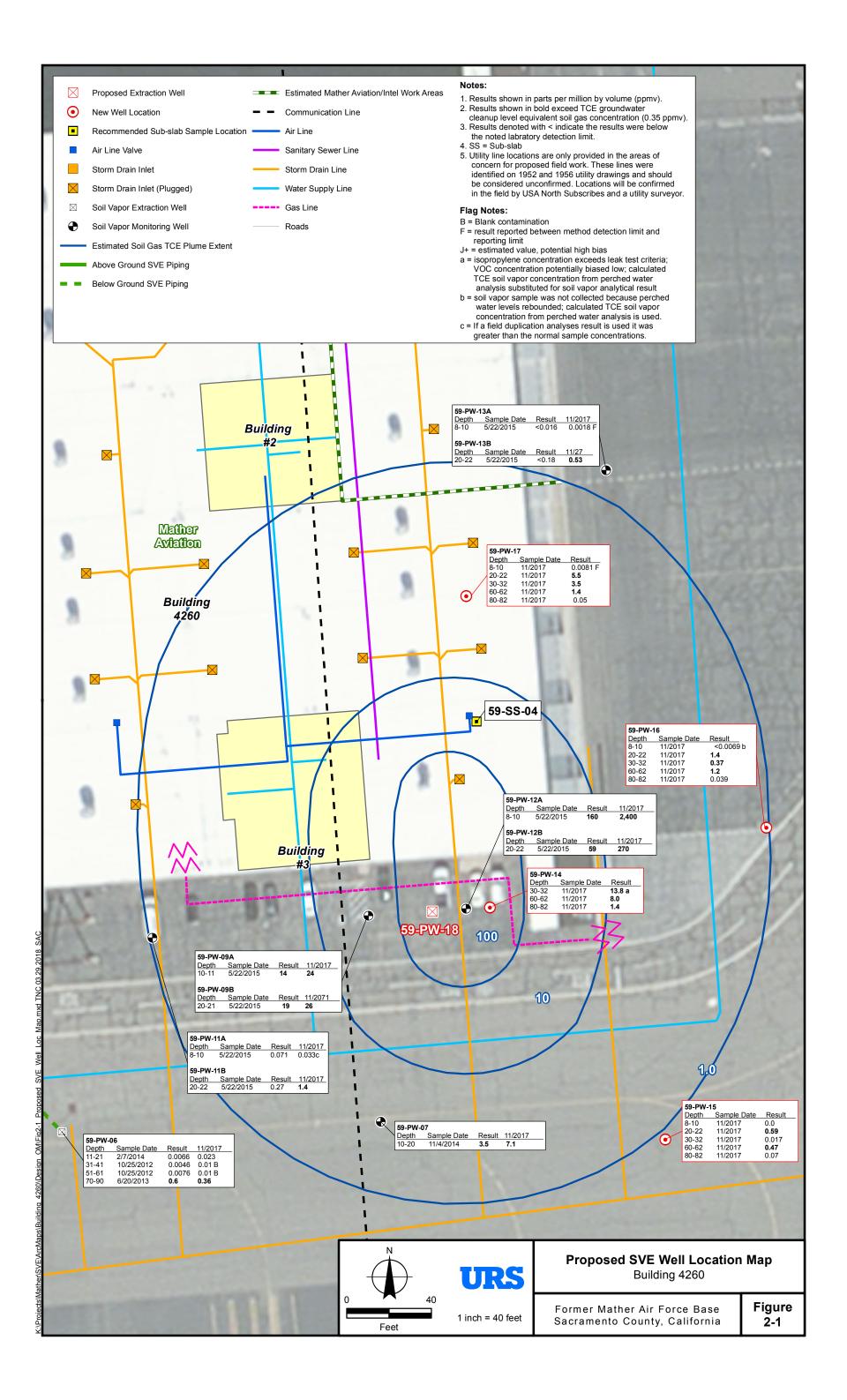
Y = Conversion factor (28.3 L/ft3)

Koc = Soil partition coeff. (ml/g)

Pa = Soil bulk density (g/cc)


At 20 deg. C


TCE


	Pgas=	5.46
	MW=	131.39
TOC = Total organic carbon (fraction) H =Henry's constant (unitless) Total porosity PORw = Water-filled soil porosity (as fraction of total) PORa = Air-filled soil porosity (as fraction of total) = total porosity - water-filled porosity Other numbers are unit conversion factors	Koc= Pa= TOC= H= Porosity= PORw= PORa=	126 1.45 0.0009 0.377 0.46 0.40 0.06

		V	LEACH - TCE Lea	achate Concent	ration at 97.5 fe	et bgs (ug/L)		
Time (years)	Polygon 1	Polygon 2	Polygon 3	Polygon 4	Polygon 5	Polygon 6	Polygon 7	All Polygons
0	20.3	378	20.3	0.72	0.57	1.01	102.8	78.3
5	18.1	336	18.0	0.64	0.51	0.90	91.4	69.7
10	16.8	308	16.5	0.64	0.51	0.84	83.8	63.9
15	16.5	289	15.5	0.75	0.61	0.83	78.5	60.0
20	17.0	275	14.7	0.98	0.81	0.87	74.6	57.4
25	18.2	264	14.2	1.32	1.10	0.95	71.8	55.6
30	19.9	256	13.7	1.75	1.46	1.06	69.6	54.5
35	22.0	250	13.4	2.25	1.87	1.19	67.8	53.7
40	24.4	244	13.1	2.79	2.30	1.33	66.4	53.3
45	26.9	240	12.9	3.35	2.73	1.47	65.3	53.1
50	29.5	237	12.7	3.93	3.16	1.61	64.4	53.0
55	32.1	234	12.5	4.52	3.56	1.74	63.6	53.0
60	34.8	231	12.4	5.12	3.93	1.86	62.9	53.1
65	37.4	229	12.3	5.71	4.27	1.96	62.3	53.3
70	40.0	227	12.2	6.31	4.58	2.05	61.8	53.5
75	42.7	226	12.1	6.90	4.85	2.12	61.3	53.8
80	45.6	224	12.0	7.49	5.08	2.18	60.9	54.2
85	48.6	223	12.0	8.08	5.28	2.23	60.6	
90	51.9	222	11.9	8.66	5.45	2.26	60.3	55.0
95	55.7	221	11.8	9.25	5.58	2.29	60.0	
100	60.1	220	11.8	9.83	5.69	2.30	59.8	
105	65.3	219	11.7	10.4	5.78	2.30	59.6	
110	71.7	218	11.7	11.0	5.84	2.29	59.4	
115	79.5	218	11.7	11.5	5.89	2.28	59.2	
120	89.0	217	11.6	12.1	5.92	2.26	59.0	
125	101	216	11.6	12.6	5.93	2.23	58.9	63.1
130	115	216	11.6	13.2	5.93	2.20	58.7	65.5
135	132	215	11.5	13.7	5.93	2.17	58.6	
140	152	215	11.5	14.2	5.91	2.14	58.5	
145	176	215	11.5	14.7	5.89	2.10	58.4	
150	204	214	11.4	15.2	5.86	2.06	58.3	
155	237	214	11.4	15.7	5.83	2.03	58.2	
160	275	214	11.4	16.1	5.79	1.99	58.1	
165	318	213	11.3	16.6	5.75	1.95	58.0	
170	366	213	11.3	17.0	5.71	1.91	57.9	
175	420	213	11.3	17.4	5.67	1.88	57.8	
180	480	212	11.2	17.8	5.62	1.84	57.8	
185	545	212	11.2	18.1	5.58	1.81	57.7	
190	617	212	11.1	18.5	5.53	1.78	57.6	
195	695	211	11.1	18.8	5.49	1.75	57.5	
200	779	211	11.0	19.1	5.44	1.72	57.4	181

Table E-2. VLEACH Modeling Results - TCE Leachate ConcentrationsB4260, Former Mather Air Force Base

APPENDIX F

B4260 SVE System Design

and

Operations and Maintenance Plan

FORMER MATHER AIR FORCE BASE INSTALLATION RESTORATION PROGRAM

BUILDING 4260 SVE SYSTEM DESIGN AND OPERATIONS AND MAINTENANCE PLAN

Draft

Prepared for

AFCEC/CIBW Attn: Roy Willis 2261 Hughes Avenue, Suite 155 Lackland AFB, TX 78236-9853

Prepared by:

URS Group, Inc. 2020 L Street, Suite 400 Sacramento, CA 95811

May 2018

NOTICE

This report was prepared by the staff of URS Group, Inc. (URS) under the supervision of registered professionals. The data interpretation, conclusions, and recommendations presented in the report were governed by URS' experience and professional judgment. This report has been prepared based on data current at the time of preparation. Assumptions based on these data, although believed reasonable and appropriate based on the data provided herein, may not prove to be true in the future as new data are collected. The conclusions and recommendations of URS are conditioned on these assumptions.

TABLE OF CONTENTS

Page 1

1.0	INTRODUCTION1-1								
	1.1	PLAN OBJECTIVES1-1							
	1.2	REPORT ORGANIZATION							
2.0	SVE	SYSTEM DESIGN2	2-1						
	2.1	BACKGROUND	2-1						
	2.2	DESIGN	2-1						
3.0	CON	STRUCTION ACTIVITIES							
	3.1	PRE-FIELD WORK ACTIVITIES	3-1						
		3.1.1 Permitting/Notifications/Utility Clearance	3-1						
	3.2	MOBILIZATION AND FIELD WORK PREPARATION	3-2						
	3.3	FIELD ACTIVITIES	3-2						
		3.3.1 Field Logs	3-2						
		3.3.2 Security and Site Control	3-3						
		3.3.3 SVE Drilling and Well Installation	3-3						
		3.3.4 SVE System Conveyance Line and System Upgrades	3-4						
		3.3.5 SVE Vapor Sampling	3-4						
	3.4	CUTTINGS AND WASTEWATER REMOVAL	3-4						
		3.4.1 Drill Cuttings and Excavated Soils	3-4						
		3.4.2 Wastewater							
	3.5	DEMOBILIZATION AND SITE RESTORATION	3-5						
	3.6	FINAL INSPECTIONS	3-6						
4.0	OPE	RATIONS AND MONITORING4	I-1						
	4.1	SVE OPERATIONS	1-1						
	4.2	SYSTEM MONITORING	1- 1						
5.0	REFI	ERENCES	5-1						

APPENDICES

- Appendix B Forms
- Appendix C Quality Assurance Project Plan Addendum

LIST OF TABLES

Table 3-1. Well Construction Specifications, Building 42603-4Table 4-1. SVE System Sampling Matrix4-2

LIST OF FIGURES

Page

Page

Figure 1-1. Site Location Map, Building 4260	1-2
Figure 1-2. Site Map and Sampling Results, Building 4260	
Figure 2-1. SVE Well Location Map, Building 4260	

LIST OF ACRONYMS

AFCEC AWS	Air Force Civil Engineer Center air-water separator
B4260 bgs	Building 4260 below ground surface
CERCLA COC	Comprehensive Environmental Response, Compensation, and Liability Act contaminant of concern
EE/CA	engineering evaluation and cost analysis
FAA	Federal Aviation Administration
HASP	Health and Safety Plan
IDW	investigation-derived waste
Mather MBSA	Mather Air Force Base Main Base/Strategic Air Command Area
O&M OWS	operations and maintenance oil-water separator
PID PVC	photoionization detector polyvinyl chloride
QAPP	Quality Assurance Project Plan
SI SI/EECA	site inspection report Building 4260 Vadose Zone Site Inspection Report and Engineering Evaluation/Cost Analysis
SOP	standard operating procedure
SVE SVM	soil vapor extaction soil vapor monitoring
TCE	trichloroethene
URS USA North 811 USC	URS Group Incorporated Underground Service Alert North 811 Uniform Soil Classification
VFD VGAC VOCs	variable frequency drive vapor-phase granular-activated carbon volatile organic compound

This page intentionally left blank

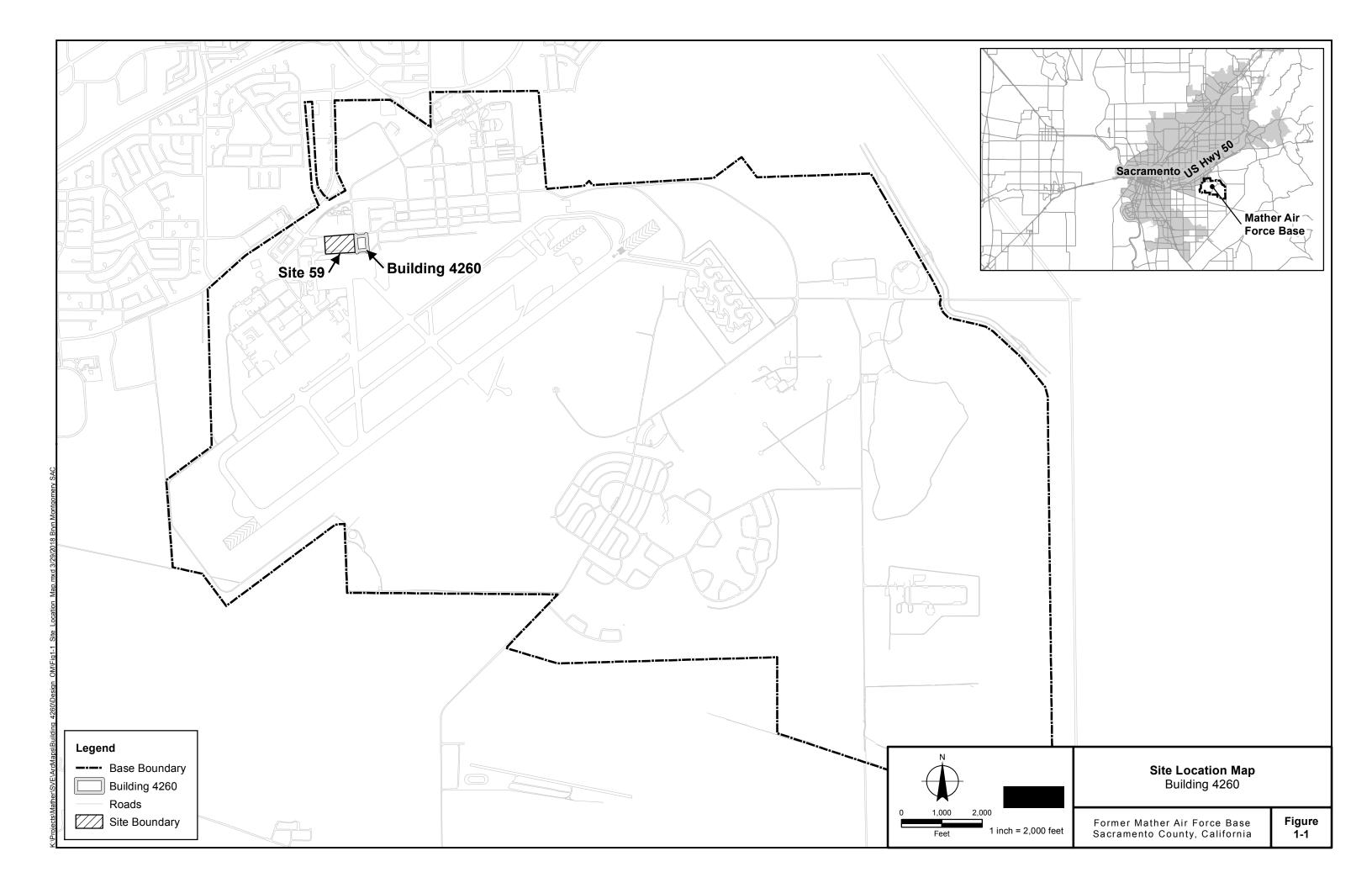
1.0 INTRODUCTION

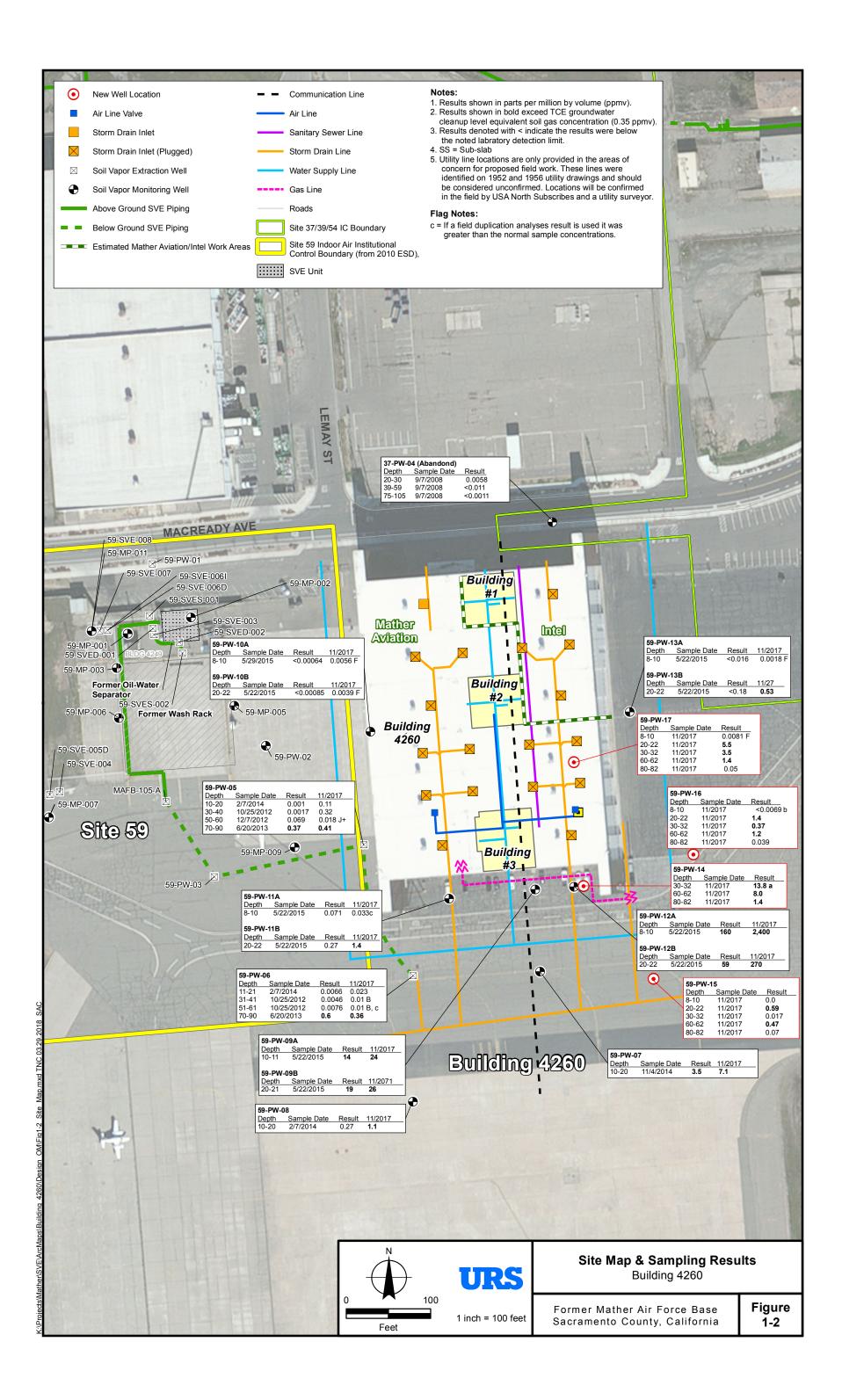
This design/operations and monitoring plan was prepared for Building 4260 by URS Group Incorporated (URS) under contract FA8903-16-D-0029, task order number 0008. This document provides the plans for construction of a new soil vapor extaction (SVE) well and associated components, and proposed operations and maintenance (O&M) for the first 6 months of operations of the SVE system. The justification for much of this work, particularly SVE well drilling and sampling, is described in the *Building 4260 Vadose Zone Site Inspection Report and Engineering Evaluation/Cost Analysis* (SI/EECA; URS 2018). This work is being conducted near the the southeastern corner of Building 4260 (B4260) at the former Mather Air Force Base (Mather) for the Air Force Civil Engineer Center (AFCEC) (Figures 1-1 and 1-2).

1.1 Plan Objectives

The plan objectives are to:

- provide design drawings for installation of a new SVE well and construction of associated conveyance piping and equipment to connect the SVE well to the exisitng Site 59 SVE system to allow for the extraction and treatment of soil vapors; and
- provide specifications for operation of the SVE system and monitoring that will occur for the first 6 months.


1.2 Report Organization


This report is organized as follows:

- Section 1.0 is an introduction to the overall plan objectives and report organization.
- Section 2.0 discusses the SVE system design.
- Section 3.0 describes the construction activities to be conducted.
- Section 4.0 discusses operations and monitoring activities.
- Section 5.0 lists the references cited in this document.

This report also includes the following appendices:

- Appendix A–Design Drawings
- Appendix B–Forms
- Appendix C–Quality Assurance Project Plan (QAPP) Addendum

This page intentionally left blank

2.0 SVE SYSTEM DESIGN

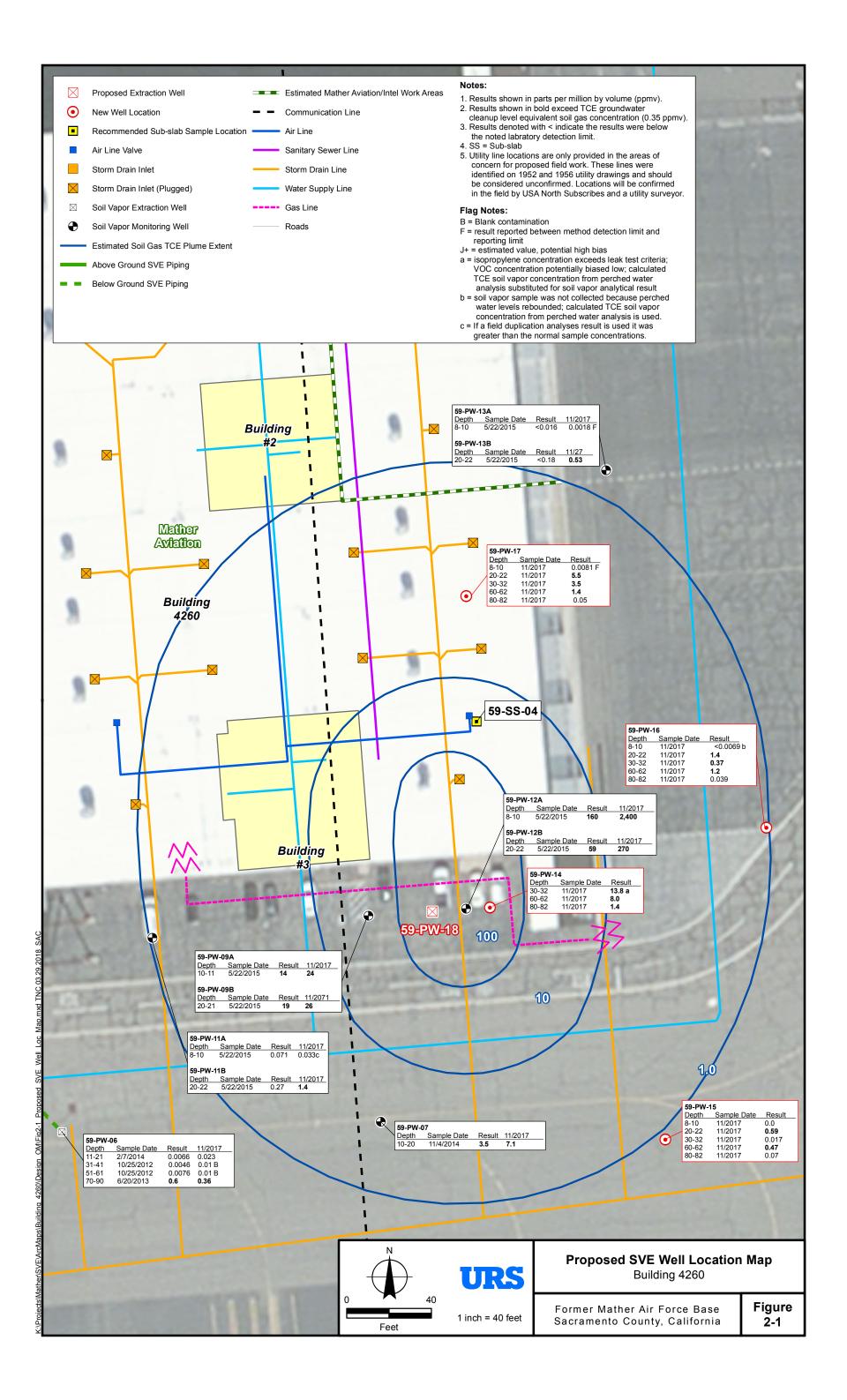
2.1 Background

The B4260 site is a vadose zone VOC source area located near the southeastern corner of the building. B4260 currently serves as a commercial aircraft maintenance hangar for Mather Aviation, which occupies the central and southern sections of the building, and Intel Corporation, which occupies the northeastern section of the building. This building was constructed around 1954, and originally was used for military purposes, including aircraft repair and maintenance. East of B4260 is the Site 59 SVE system, which was installed to remediate the vadose zone contamination associated with the former Site 59 oil-water separator (OWS) and wash rack.

The main vadose zone VOC contaminant of concern (COC) is trichloroethene (TCE); the source area is located in the vicinity of soil vapor monitoring (SVM) well 59-PW-12A. The approximate contamination extent is shown in Figure 2-1. This plume map is based on the baseline sampling activities that were conducted in November 2017, which are discussed in the SI/EECA (URS 2018).

A potential source of vadose zone contamination at 59-PW-12A is the nearby storm drain (Figure 1-2). There are four storm drain lines that run in a north-south direction through the hangar that were designed to capture spills and storm water collected from the roof. Two storm drain lines would have collected liquids from the northern quarter of the building and transported the fluid by gravity to the north; two additional storm drain lines would have collected spills from the remainder of the hangar and transported them by gravity to the south. It is believed that all of the floor drains inlets, with the exception of the drain inlet located in the northwest corner of the building, were plugged when the property was transferred to Sacramento County.

Perched water was observed in the soil vapor wells near the southeastern end of B4260, after the new SVM wells were installed in February 2017, following an unseasonably wet rainy season. The perched water persisted, but water levels declined over time. Baseline sampling was conducted in November 2017, to assess the extent of vadose zone contamination. Sampling could not be performed for all of the SVM wells due to the perched water, but sufficient data were collected to determine that an SVE removal action was appropriate.


2.2 Design

The design for the SVE well and the construction of conveyance piping to the existing Site 59 SVE system are provided in Appendix A. The new SVE well (59-PW-18) will be installed northwest of SVM well 59-PW-12, west of the storm drain line, as shown in Figure 2-1. The SVE system conveyance line and SVE system details are shown in the design drawings, provided in Appendix A. The design includes the following:

- Soil vapor will be extracted from the new SVE well at B4260, 59-PW-18.
- An air-water separator (AWS) (AWS-2) will be installed near the new SVE well, to capture perched water and condensate to minimize accumulation of water in the remaining piping. AWS-2 will be a refurbished unit, taken from one of the decommissioned Mather SVE systems, and will have a minimum capacity of 50 gallons; the existing AWS, located at the Site 59 blower, will be referred to as AWS-1.
- Conveyance piping will be installed from the new SVE well to the piping that connects 59-PW-05 and 59-PW-06 to the Site 59 SVE treatment system; the existing Site 59 conveyance piping from that area is still intact and will be used to convey the soil vapor to the Site 59 blower. Multiple low-point

drains are located along the length of the piping, to facilitate capture of condensed water generated during SVE.

- A variable frequency drive (VFD) will be installed at the Site 59 treatment system to improve control of the blower motor while conserving power.
- A high vacuum sensor will be installed to trigger an SVE blower shutdown. If water accumulates in AWS-2 or in the piping, a high vacuum condition will trigger a system shutdown. The SVE system can be restarted only manually, after the AWS and low-point drains have been drained and the alarm has been reset.
- A cellular notification system to notify URS personnel of system alarms and shutdowns will replace the analog autodialer.

This page intentionally left blank

3.0 CONSTRUCTION ACTIVITIES

This section discusses the well installation, conveyance line construction, and initial baseline vapor sampling activities for the proposed SVE well and SVE treatment system. This section is intended for use by field staff, to provide guidance for the field work outlined in this document. The Sampling and Analysis Plan, which is made up of the field sampling plan (Part 1) and the QAPP (Part 2), discusses all quality-related field sampling and laboratory analysis activities that will be implemented during sampling and monitoring activities (MWH 2010). An addendum to the QAPP specific to activities discussed in the plan is provided in Appendix C.

3.1 **Pre-Field Work Activities**

Pre-field work activities are those that must be completed before the well drilling subcontractor mobilizes to the site. Before mobilization, all access will be coordinated through AFCEC personnel and Mather Aviation. After field work has begun, drilling activities will be coordinated directly with Mather Aviation staff.

3.1.1 Permitting/Notifications/Utility Clearance

The proposed well drilling location and subsurface trenching locations will be marked by the field crew. Field staff will contact Underground Service Alert North 811 (USA North 811) to clear these areas at least 48 hours before any subsurface activity. West Coast Gas Company, Inc., the local natural gas company, has requested a meeting with the construction supervisor at the time of the USA North 811 utility survey and before the trenching activities that will cross its utility line. This area previously was surveyed by a utility-locating subcontractor before installation of the existing SVM wells. The SVE well location will be hand-augered or otherwise cleared by "soft-digging" methods (e.g., hand augering, air knife, and vacuum truck) to a depth of 5 feet below ground surface (bgs), to avoid unknown utilities or other belowground obstructions/hazards.

Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), this work is exempt from permitting, although field activities must be performed in a manner that meets the substantive local permitting and notification requirements. Therefore, no drilling or well installation permits will be obtained from the Sacramento County Environmental Health Department. However, as the property owner, Sacramento County will be notified.

The drilling, trenching, and conveyance pipe installation activites will occur close to B4260 but do not appear to require a Federal Aviation Administration (FAA) Form 7460-1, "Notice of Proposed Construction or Alteration." However, the FAA will be contacted before the start of field activites, to confirm that this is the case.

Wastewater generated during field activities and system operations will be contained and handled as described in Section 4.1. The method of discharge of the water currently is being evaluated. Options include pumping the water to a nearby groundwater conveyance line to the Main Base/Strategic Air Command Area (MBSA) groundwater treatment system, transporting the water to a location just before the air stripper of the MBSA groundwater treatment system, or transporting the water to the Mather contractor yard to be discharged to the sanitary sewer at Mather Outfall #1 (on the east side of Femoyer Street, east of Grissom Avenue), under a Sacramento County Regional Sanitation District Sewer Discharge Permit GRW021.

The SVE blower air/water heat exchanger requires a source of water and will discharge no-contact cooling water to Mather Outfall #5, under Sacramento County Regional Sanitation District Sewer Discharge Permit GRW021.

The SVE system has two 3,000-pound vapor-phase granular-activated carbon (VGAC) units that will be used to treat discharged air until VOC emissions meet the standards, allowing direct discharge outlined in the existing Site 59 SVE system's air discharge permit exemption.

3.2 Mobilization and Field Work Preparation

Before the start of field work, the following mobilization and field preparations will be performed:

- A staging area will be set up (for drinking water, sampling supplies) for field team use.
- Portable toilets will be deployed to the work site, if other facilities are unavailable.
- Vehicles for field crews and all equipment and materials for initial activities will be obtained.
- Applicable field work forms will be copied, including tailgate forms, daily operations and field logs, sampling forms, and lithologic/well construction logs (samples of these forms are provided in Appendix B).
- Applicable field instruments (e.g., a photoionization detector [PID]) will be calibrated, tested, and charged.
- Field staff will review this design document, the Mather Health and Safety Plan (HASP) (URS 2010), and other applicable documents pertaining to construction practices and sampling procedures.
- All drilling equipment will be brought on site, including a drill rig, support trucks, drilling tools, well construction materials, and decontamination pads. The drill rig and subsurface tools and equipment will be decontaminated before being brought onto the work site and beginning work, and an equipment inspection form and checklist will be completed.
- A waste hauling subcontractor will deliver soil bins to the site, to be located in an area designated by URS personnel and as agreed by Airport Operations staff. Any wastes that are generated will be stored in an area designated by URS personnel at the URS staging yard or other area, as agreed by Sacramento County and the Air Force.

3.3 Field Activities

The following sections describe field activities to be conducted.

3.3.1 Field Logs

Field staff will maintain daily field logs and notes, recording all field activities and observations, problems encountered, actions taken to solve the problem, and deviations from this plan or the QAPP Addendum (provided in Appendix C). The field logs are to be a chronological record of the day's activities and will include the following information:

- Date;
- subcontractor and URS staff names;
- weather conditions;
- problems/action items (if any);

- visitors (name of visitor/affiliation/reason for visit); and
- chronological log of activities.

3.3.2 Security and Site Control

The field crew will implement security and site control procedures, to reduce the potential for uncontrolled contaminant migration from the work areas, and to limit access by unauthorized personnel.

The site will be managed to contain all soil, water, grout, concrete, and personal protective equipment wastes. During non-working periods, all equipment and materials will be secured appropriately. Caution tape and delineators will be used to mark potentially dangerous areas.

Perimeter controls will be employed around work areas, and all site personnel will comply with the site control requirements of the Mather HASP when entering the work zone. The site supervisor will conduct a daily "tailgate" safety meeting at the start of each day's work, and all authorized personnel will be required to sign the tailgate safety form (a blank tailgate form is provided in Appendix B) before the start of daily activities.

3.3.3 SVE Drilling and Well Installation

After hand-augering or air-knifing to 5 feet bgs for borehole utility clearance, a sonic drilling rig will be used to drill the borehole for the proposed SVE well 59-PW-18, shown in Figure 2-1. Sonic drilling was selected for its ability to penetrate coarse gravels and cobbles, which may be encountered below the ground surface. The SVE borehole will be advanced to approximately 61 feet bgs (Sheet C-6 in Appendix A). Continuous soil cores, collected from inside the sonic sampling tool, will be described and classified by the on-site geologist, in accordance with the Uniform Soil Classification (USC) System.

The SVE well will be constructed according to the schedule provided below, using machine-slotted (0.02-inch-wide slot size), 4-inch-diameter Schedule 40 polyvinyl chloride (PVC), screened from 8 to 40 feet bgs and from 54 to 60 feet bgs. The well construction details are provided in the design, Sheet C-6, in Appendix A. The SVE well will have two screen intervals. The upper screen interval will target the 8 to 40 ft bgs depth interval and the lower screen interval will target the 54 to 60 foot bgs depth interval. This construction is based on the presence of a permeable sand layer observed from 46 to 50 feet bgs in the nearyby well, 59-PW-14, that is to be avoided in order to maximize the air flow in the zero to 40-foot depth interval.

Borehole Depth (feet)	Casing and Screen Diameter (inches)	Casing and Screen Material	Screen Intervals (feet)	Screen Slot Size (inches)	Filter Pack #3 Sand + Sand bridge Sand (feet)	Hydrated Bentonite Seal (feet)	Above Hydrated Bentonite
59-PW-18	4	4" SCH 40 PVC	8-40	0.020	34.5	1.5	cement grout*
59-PW-18	4	4" SCH 40 PVC	54-60	0.020	8.5	9.5	NA

Table 3-1. Well Construction Specifications, Building 4260

* Contains approximately 5 percent bentonite to reduce shrinkage.

NA = not applicable

PVC = polyvinyl chloride

SCH = schedule

The SVE well will be plumbed to the Site 59 SVE conveyance piping. The SVE well vault will be H-20 traffic-rated (i.e., 25,000-pound load) and installed flush with the ground surface with a bolted cover. See Sheet C-7 in Appendix A for further details.

3.3.4 SVE System Conveyance Line and System Upgrades

The SVE system conveyance line and SVE system installation will follow the design drawings (Appendix A).

3.3.5 SVE Vapor Sampling

Per DTSC guidance for wells installed using the sonic method, the initial, baseline vapor sample will be collected from the new SVE well no sooner than 72 hours after installation is completed and the subsurface has equilibrated. Subsurface equilibration will be evaluated by collecting PID, oxygen, and carbon dioxide measurements beginning the day after installation, until the measurements are considered stable, as recommended in *Advisory–Active Soil Vapor Investigations* (DTSC et al. 2015).

The SVE soil vapor sample will be collected using the vapor sampling standard operating procedure (SOP), provided in Appendix D of the RI workplan. Leak testing also will be conducted where possible.

3.4 Cuttings and Wastewater Removal

Well drilling, installation, and decontamination activities will generate soil core (cuttings) and possibly wastewater. This investigation-derived waste (IDW) will be containerized and stored at an appropriate location, to be determined by URS and Airport Operations staff. A designated subcontractor will be responsible for providing all containers (e.g., soil bins), transportation, and disposal of soil cuttings. The soil bins will be lined and water-tight. Sections 5.1.3.1 and 5.1.3.1.1 of the Sampling and Analysis Plan (MWH 2010) present more specific instructions for disposal of the drill cuttings and wastewater.

3.4.1 Drill Cuttings and Excavated Soils

During drilling operations and trenching, soil cuttings and excavated soils will be contained in separate bins or 55-gallon drums. Soil cores and trench materials will be screened with a PID, as they are generated, to evaluate the presence of VOCs.

When full, or before transportation, each container will be sealed, and an IDW label will be completed and attached. The label will include the following information, at a minimum: drum or bin number, boring identification, site name, date, material contained, and contact information.

A representative composite sample of the IDW soil will be collected and submitted for non-volatile laboratory analysis, as described in the QAPP Addendum (provided in Appendix C), to determine whether the soil cuttings will require off-site disposal. Discrete soil samples will be collected for all VOC analyses. The samples will consist of soil only; all other material (e.g., rocks, concrete) will be segregated and disposed as solid waste. The field crew will deposit all nonhazardous trash in dumpsters in the staging area, for subsequent disposal in a municipal landfill.

3.4.2 Wastewater

Decontamination of drilling equipment should not generate a volume of wastewater that will require separate handling from the drill cuttings. However, if this is not the case, disposal of wastewater generated during project activities will be coordinated with the AFCEC field engineer and/or Base Realignment and Closure Environmental Coordinator. Wastewater will be contained in a vessel (e.g., water tank) on site and will be transported to the staging area, to be discharged at an approved sewer outfall after sewer permit requirements are met, or to the MBSA treatment system.

3.5 Demobilization and Site Restoration

Following completion of well installation and SVE system upgrade activities, URS will demobilize equipment and materials from the work site. Demobilization will include the following:

- Ensuring that the surface completion for the installed wells are completed and properly secured, and that site restoration meets airport approval.
- Using the State Plane Coordinate System, Zone 3, North American Datum of 1983 and National Geodetic Vertical Datum of 1988 to map survey locations of the SVE well and subsurface piping.
- Inspecting the drilling decontamination pad/area located in the URS Mather Field Office area and verifying that it is clean.
- Verifying that all IDW wastewater and cuttings from field activities have been manifested/profiled properly and transported off-site to an appropriate disposal facility, and that no soil bins remain on site.
- Ensuring that site surface features are restored to match the surrounding area, with a minimum of surface disturbance.
- Removing all trash and excess materials that are generated during construction.
- Ensuring that the site is left neat and orderly.
- Ensuring that the contractor's staging area is clear of all construction-related equipment and materials.
- Ensuring that all rental equipment and rental vehicles have been cleaned, decontaminated as necessary, and returned to the vendors.

3.6 Final Inspections

If requested, following demobilization and site restoration, a site walk with an AFCEC representative and the Mather Airport Operations staff will be performed to ensure that the site has been appropriately restored.

4.0 OPERATIONS AND MONITORING

Soil vapor will be extracted from the new B4260 SVE well, 59-PW-18, using the upgraded Site 59 SVE conveyance and treatment system. The soil vapor will be treated by VGAC until concentrations drop below the direct discharge criteria in the air permit.

4.1 SVE Operations

The SVE system will be operated for a minimum of 6 months. The need for continued operations after the initial 6 months will be evaluated at that time.

Water removal. AWS-1, AWS-2, and the low-point drains will be emptied on an as-needed basis. Initially, the system will be checked at least 2 times a week, until the rate of water removal normalizes and the frequency of removal becomes more predictable. The frequency of site visits will be determined based on the rate of water removal and is expected to be more frequent in winter, when air temperatures drop to below subsurface temperatures, and following rain events, when perched water levels are likely to rise.

Water from AWS-1, AWS-2, and the low-point drains will be pumped manually to a holding tank, mounted on a trailer or the back of a truck. Treatment and disposal options for the water are being evaluated, as discussed in Section 3.1.1.

4.2 System Monitoring

System monitoring will include collection of flow measurements and soil vapor samples from the treatment system and the monitoring wells for laboratory analysis.

SVE Treatment System Monitoring. Following restart of the Site 59 SVE system, system pressure measurements, PID readings, and flow parameters initially will be recorded daily to weekly, until system flows normalize, after which they will be monitored and recorded during weekly to bi-weekly site visits.

Soil Vapor Sampling. Soil vapor sampling will be conducted per the sampling matrix shown in Table 4-1 for the first 6 months. After the first 6 months of operations, the sampling frequency will be re-evaluated as appropriate.

- SVE treatment system monitoring points will be sampled monthly at the following:
 - the SVE system inlet;
 - the VGAC lead vessel outlet; and
 - the VGAC lag vessel outlet.
- Soil vapor monitoring wells will be sampled quarterly, following the sampling matrix shown in Table 4-1. Only those SVM wells immediate to the source area near 59-PW-12 will be sampled during the first quarterly sampling event. The second quarterly sampling event will include sampling for all SVM wells associated with B4260.

				Soil Gas Sampli	ng Evonte		
				First Q		Second	l Quarter
	SVM	SVE Well	SVE System	3 Monthly SVE System Sample	SVE System Quarterly Monitoring	3 Monthly SVE System Sample	SVE System Quarterly Monitoring
Sampling Locations:	Baseline ^a	Drilling	Startup	Events	Event #1	Events	Event #2
Wells installed prior to 2017		8	^				
59-PW-05 (10-20)	а				0		1
59-PW-05 (30-40)	а				0		1
59-PW-05 (50-60)	а				0		1
59-PW-05 (70-90)	а				0		1
59-PW-06 (11-21)	а				0		1
59-PW-06 (31-41)	а				0		1
59-PW-06 (51-61)	а				0		1
59-PW-06 (70-90)	а				0		1
59-PW-07 (10-20)	а				1		1
59-PW-08 (10-20)	а				1		1
59-PW-09A (10-11)	а				1		1
59-PW-09B (20-21)	а				1		1
59-PW-10A (8-10)	а				0		1
59-PW-10B (20-22)	а				0		1
59-PW-11A (8-10)	а				1		1
59-PW-11B (20-22)	а				1		1
59-PW-12A (8-10)	а				1		1
59-PW-12B (20-22)	а				1		1
59-PW-13A (8-10)	а				1		1
59-PW-13B (20-22)	а				1		1
SVM wells installed in 2017	-				1		1
59-PW-14 (30-32)	а				1		1
. ,	а				1		1
59-PW-14 (60-62)	а				1		1
59-PW-14 (80-82)	а				1		1
59-PW-15 (8-10)	а				1		1
59-PW-15 (20-22)	а				1		1
59-PW-15 (30-32)	а				1		-
59-PW-15 (60-62)	а				1		1
59-PW-15 (80-82)	а				1		1
59-PW-16 (8-10)	а				1		1
59-PW-16 (20-22)	a				1		1
59-PW-16 (30-32)	а				1		1
59-PW-16 (60-62)	a						1
59-PW-16 (80-82)	я						1
59-PW-17 (8-10)	a						1
59-PW-17 (20-22)	a						1
59-PW-17 (30-32)	a						1
59-PW-17 (60-62)	a						1
59-PW-17 (80-82)					1		1
New SVE well					b		b
59-PW-18 (8-40)		1			5		0
SVE system operations			_			-	
SVE system influent ^b			2	3		3	
SVE VGAC mid-bed			2	3		3	
SVE VGAC outlet	<u> </u>		2	3	-	3	-
Number of Well Samples =	a	1	0	0	28	0	38
SVE System Samples =	a	0	6	9	0	9	0
Number of Samples =	0	1	6	9	28	9	38
Field Duplicates =	0	0	1	1	3	1	4
Total Samples per Event =	0	1	7	10	31	10	42

Table 4-1.	SVE S	ystem	Sampling	Matrix
------------	-------	-------	----------	--------

Assumptions:

^a The SVM baseline samples were collected in November 2017.

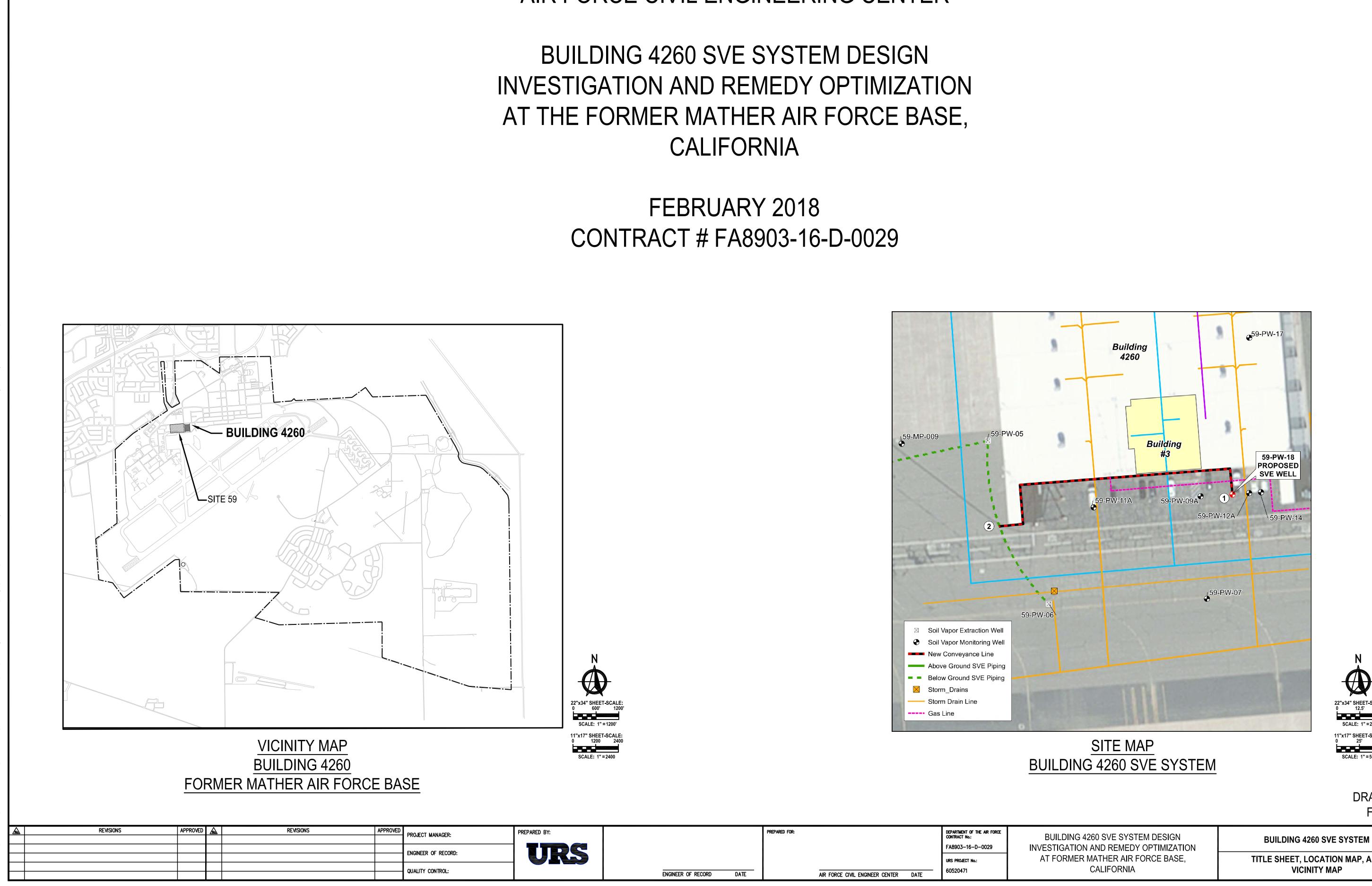
^b The SVE well and SVE system influent are equivalent; for the quarterly sampling events, the sample will be collected at the SVE well. For system monitoring events that do not coincide with quarterly monitoring events, the system inlet sample location can be used if access is more convenient.
 PID levels also will be recorded so that interim PID readings can be used to assess system conditions.

Soil vapor samples will be collected using the vapor sampling SOP, provided in Appendix D of the RI workplan. All samples will be analyzed for the site-specific VOCs listed in Table C-1 in the QAPP Addendum (Appendix C), using Method TO-15, with reporting limits of 5 parts per billion by volume for target analytes.

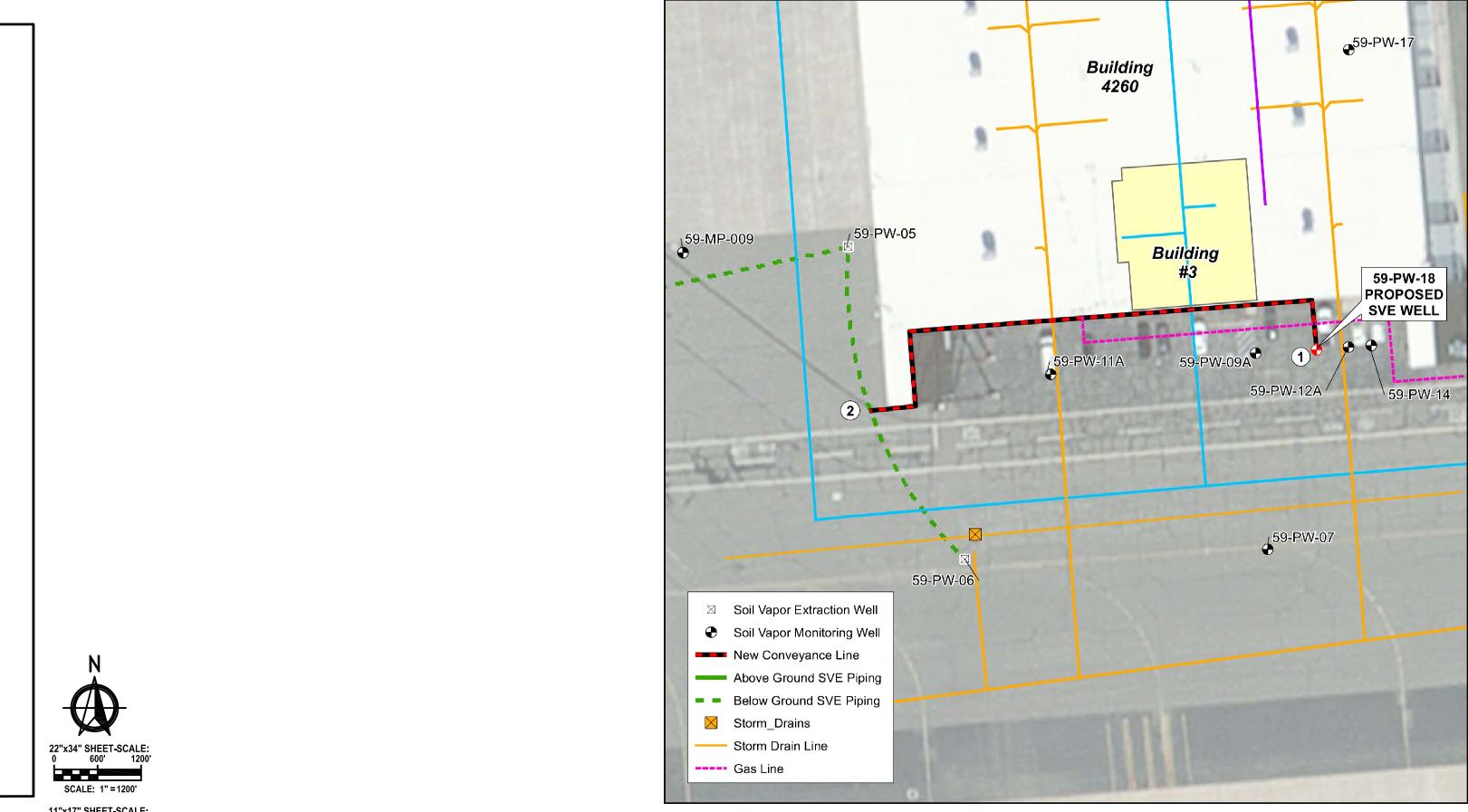
PID Monitoring. PID monitoring will be conducted concurrent with soil vapor sampling, to develop a correlation so that real-time monitoring with the PID can be conducted with some level of confidence between sampling events. This will be particularly helpful to assess the VGAC outlet concentrations.

This page intentionally left blank

5.0 REFERENCES


Air Force Civil Engineer Center (AFCEC). 2018 (in progress). Final Building 4260 Action Memorandum.

- California Department of Toxic Substances Control (DTSC), Los Angeles Regional Water Quality Control Board, and San Francisco Regional Water Quality Control Board. 2015 (July). Advisory– Active Soil Vapor Investigations.
- Montgomery Watson Harza (MWH). 2010 (May). Sampling and Analysis Plan. Part I-Field; Part 2-Quality Assurance Project Plan, Sampling Plan, Former Mather Air Force Base. Sacramento County, CA.
- URS Group, Inc. (URS). 2010 (August). Former Mather Air Force Base Health and Safety Plan for Long-Term Operations, Maintenance, and Monitoring.
- ———. 2017 (February). Site 59b Remedial Investigation Work Plan, Former Mather Air Force Base, California.
- ———. 2018 (March). Building 4260 Vadose Zone Site Inspection Report and Engineering Evaluation and Cost Analysis, Former Mather Air Force Base.


This page intentionally left blank

APPENDIX A

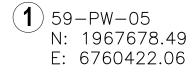
Design Drawings


AIR FORCE CIVIL ENGINEERING CENTER

G 4260 SVE SYSTEM DESIGN
ON AND REMEDY OPTIMIZATION
R MATHER AIR FORCE BASE,
CALIFORNIA

TITLE SHEET, LOCATION MAP, AND VICINITY MAP

G-1 SHEET OF 12


CONSTRUCTION NOTES:

A. SCOPE:

1. PARTIES INVOLVED IN THE PROJECT:

- I CLIENT U.S. AIR FORCE (AFCEC/CIBW)
- SACRAMENTO COUNTY AIRPORT SYSTEM
- I TENANT MATHER AVIATION
- I ENGINEER URS GROUP INC. CONTRACTOR - URS GROUP INC.
- B. GENERAL NOTES:
- 1. ANY CONTRADICTIONS OR CONFLICTING STATEMENTS CONTAINED IN THESE NOTES OR BETWEEN THESE NOTES AND THE PROJECT DRAWINGS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY. CONTRACTOR IS TO REVIEW DRAWINGS AND CONDUCT A SITE VISIT PRIOR TO START OF WORK. ANY CONFLICT BETWEEN THE DRAWINGS AND ACTUAL SITE CONDITIONS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO START OF WORK.
- 2. CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING ALL FIELD DIMENSIONS WITH ENGINEER BEFORE BEGINNING WORK; THE ENGINEER SHALL BE NOTIFIED OF ANY DISCREPANCY.
- 3. LOCATIONS OF EXISTING UNDERGROUND UTILITIES SHOWN ON THE PLANS ARE APPROXIMATE ONLY. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE THE EXACT LOCATIONS OF ALL UTILITIES, WHETHER SHOWN ON THE PLANS OR NOT.
- 4. ALL IMPROVEMENTS WHICH SURROUND THE PROPERTY SHALL REMAIN UNDISTURBED AND UNDAMAGED AS A RESULT OF THE PROJECT.
- 5. CONTRACTOR SHALL ORGANIZE WORKFLOW TO MINIMIZE THE TIME THAT TRENCHES ARE OPEN. BARRICADES AND SECURITY FENCING SHALL BE PROVIDED AS NEEDED AT ALL EXCAVATIONS AND DISTURBED AREAS THROUGHOUT THE PROJECT TO ENSURE VEHICULAR AND PEDESTRIAN SAFETY. IF EXCAVATION WILL REMAIN OPEN OVERNIGHT, TRENCH PLATES SHALL BE USED AND BARRICADES SHALL BE LIGHTED FROM DUSK TO DAWN.
- 6. SITE SHALL BE MAINTAINED IN A NEAT AND CLEAN CONDITION THROUGHOUT CONSTRUCTION ACTIVITIES. CONTRACTOR SHALL FOLLOW FEDERAL AVIATION ADMINISTRATION REQUIREMENTS FOR WORK ADJACENT TO AN AIRFIELD. NO DEBRIS, MOUNDS OF EARTH OR ARTICLES OR EXCESS MATERIAL SHALL REMAIN AFTER COMPLETION OF THE PROJECT.
- 7. CONTRACTOR SHALL INSTALL EQUIPMENT AND APPURTENANCES WITH RESPECTIVE MANUFACTURES' INSTALLATION MANUALS, UNIFROM PLUMBING CODE (UPC), UNIFORM BUILDING CODE (UBC), NATIONAL ELECTRIC CODE (NEC), AND UNIFORM FIRE CODE (UFC) STANDARDS AND SPECIFICATIONS.
- 8. PROVIDE AS-BUILT DRAWINGS TO THE ENGINEER.
- 9. CONTRACTOR SHALL COORDINATE ALL WORK WITH TENANT TO MINIMIZE DISRUPTION TO BUSINESS OPERATIONS AND PARKING. WORK THAT IS EXCESSIVELY LOUD SHALL BE CONDUCTED AFTER HOURS.

SURVEY CONTROL:

(**2**)59-PW-06 N: 1967523.29 E: 6760454.14

Air F	Â	REVISIONS	APPROVED	REVISIONS	APPROVED	PROJECT MANAGER:	PRE
∕ SU						PROJECT MANAGER:	
ו∕י ני∕ו						ENGINEER OF RECORD:	
ΨË						ENGINEER OF RECORD:	
NAN						QUALITY CONTROL:	1
FILE						QUALITY CONTROL:	

C. TRENCHING, EXCAVATION, CONCRETE, AND PAVING:

- 1. EXISTING ASPHALT AND CONCRETE SURFACES SHALL BE SAWCUT ALONG A STRAIGHT LINE PRIOR TO RESTORATION.
- 2. UTILITY TRENCHES SHALL BE EXCAVATED A MINIMUM OF 2 INCHES DEEPER THAN THE INVERT OF INSTALLED PIPES. ALL BELOW GRADE PIPING SHALL HAVE A MINIMUM BURIED DEPTH OF 24 INCHES (EXCEPT WHERE SPECIFIED). PLEASE REFER TO TRENCH DETAILS ON SHEET 6 FOR MINIMUM TRENCH BACKFILL REQUIREMENTS WHICH APPLY TO ALL SITE TRENCHING.
- 3. CONTRACTOR SHALL INSTALL SVE CONVEYANCE PIPING UNDER THE EXISTING WEST COAST GAS LINE AND MAINTAIN A SEPARATION OF 12 INCHES. CONTRACTOR SHALL CONTACT WEST COAST GAS REPRESENTATIVE TO COORDINATE A SITE VISIT AS PART OF THE USA NORTH UTILITY CLEARANCE.
- 4. CONTRACTOR SHALL BACKFILL UTILITY TRENCHES WITH NATIVE BACKFILL IN ACCORDANCE WITH CALTRANS STANDARD SPECIFICATION SECTION 10-3.025B. UTILITY TRENCH BACKFILL SHALL BE COMPACTED AS SPECIFIED BELOW.
- 5. CONTRACTOR SHALL PLACE A MINIMUM OF 6.5 INCHES OF AGGREGATE BASE PRIOR TO SURFACING. AGGREGATE BASE SHALL BE IN ACCORDANCE WITH CALTRANS STANDARD SPECIFICATIONS, LATEST EDITION, SECTION 26 FOR CLASS II A.B., 3/4 INCH MAXIMUM AGGREGATE. AGGREGATE BASE SHALL BE COMPACTED TO 95% OF THE MAXIMUM DRY DENSITY AS DETERMINED BY ASTM D-1557.
- 6. SURFACING SHALL BE REPLACED WITH LIKE PAVEMENT, UNLESS SHOWN OTHERWISE, AND SHALL BE RESTORED TO EXISTING CONDITIONS.
- 7. ASPHALT PAVEMENT SHALL BE IN ACCORDANCE WITH CALTRANS STANDARD SPECIFICATIONS LATEST EDITION, FOR TYPE B ASPHALT CONCRETE. SAWCUT EDGE OF EXISTING ASPHALT SHALL BE CLEANED AND SHALL HAVE A COAT OF LIQUID ASPHALT APPLIED PRIOR TO CONSTRUCTION OF NEW ASPHALT PAVEMENT.
- 8. CONTRACTOR SHALL PLACE EXCAVATED SOIL INTO A BIN LOCATED ON THE WASH RACK PAD AND SHALL COLLECT A 4 PART COMPOSITE FOR LAB ANALYSIS. SOIL MAY BE STOCKPILED ON TOP OF PLASTIC TEMPORARILY, BUT MUST BE PLACED IN THE BIN AT THE END OF EACH DAY. SOIL SHALL BE DISPOSED OF AFTER WASTE CHARACTERIZATION IS COMPLETE.
- 9. CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL EXCAVATED ASPHALT AND CONCRETE FROM THE SITE AS CONSTRUCTION DEBRIS.
- 10. THE CONTRACTOR SHALL USE ONLY THE WASH RACK OR OTHER APPROVED ON-SITE AREAS FOR STORING CONSTRUCTION MATERIALS AND EQUIPMENT, AND FOR STOCKPILING EXCAVATED SOIL OR DEMOLITION DEBRIS.

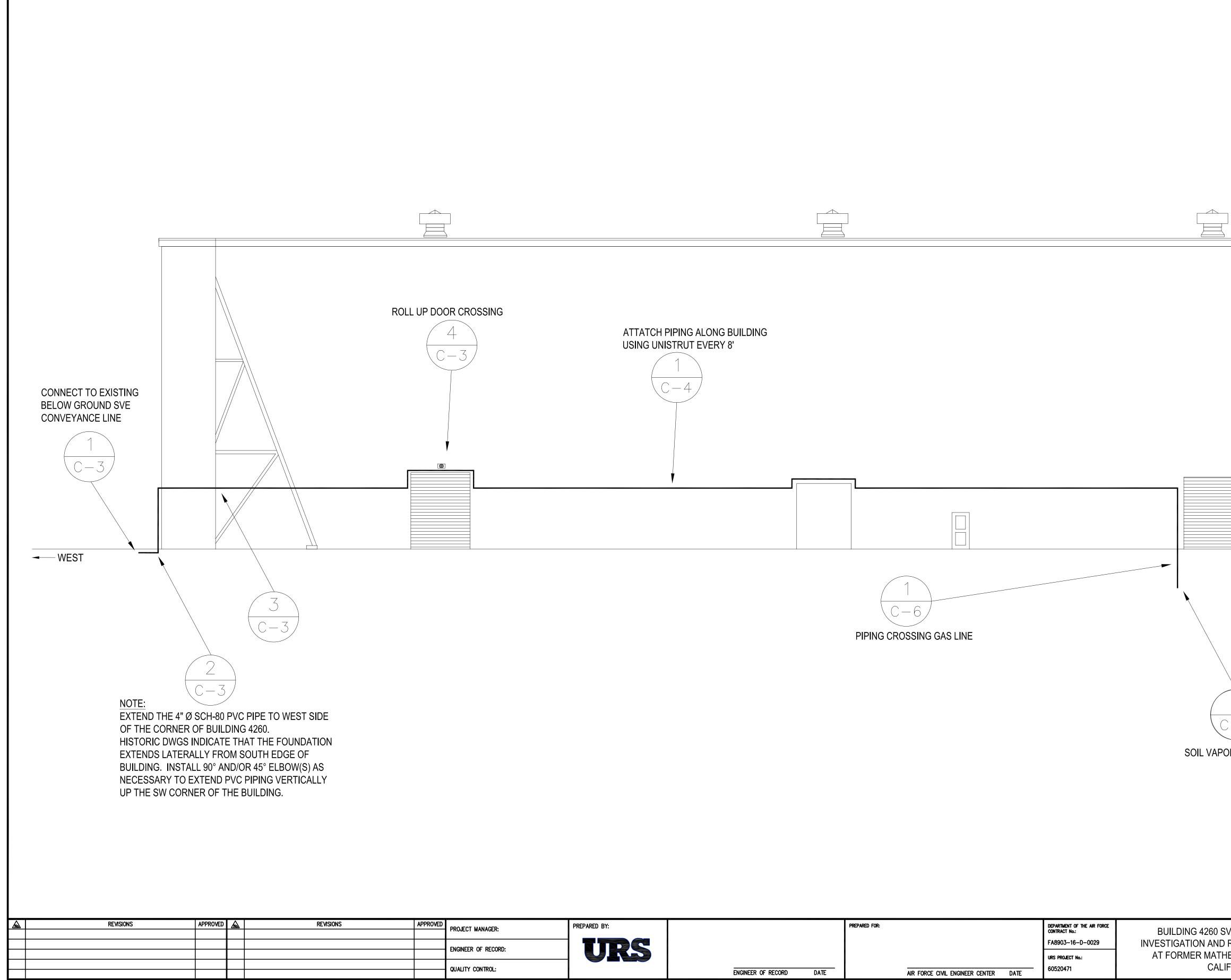
CALLOUTS LEGEND:		INDE	EX OF DRAWINGS]	
DETAIL IDENTIFICATION NO.	DRAWING NO	SHEET NO	DRAWING	G CONTENT		
SHEET ON WHICH DETAIL IS DRAWN	G-1	1 OF 12	TITLE SHEET, LOCATION MAP,	AND VICINITY MAP		
SHEET(S) FROM WHICH DETAIL IS TAKEN	G-2	2 OF 12	SURVEY NOTES, ABBREVIATION LEGEND, AND INDEX OF DRAV	IS, GENERAL NOTES, CALLOUTS WINGS		
DETAIL CALLOUTS	C-1	3 OF 12	CONVEYANCE PIPING PROFILE	VIEW	1	
SECTION IDENTIFICATION LETTER	C-2	4 OF 12	CONVEYANCE PIPING PLAN VI	EW	1	
	C-3	5 OF 12	CONVEYANCE PIPING DETAILS			
SHEET ON WHICH SECTION IS DRAWN	C-4	6 OF 12	UNISTRUT DETAILS			
SHEET ON WHICH SECTION IS DRAWN	C-5	7 OF 12	BOLLARD DETAILS]	
SHEET(S) FROM WHICH SECTION	C-6	8 OF 12	CONVEYANCE PIPING CROSSIN	IG GAS LINE DETAIL		
SECTION CALLOUTS	C-7	9 OF 12	SOIL VAPOR EXTRACTION WEL	l details		
	C-8	10 OF 12	SVE MANIFOLD DETAILS			
	C-9	11 OF 12	FOUNDATION DETAILS		DRAFT SUB	MITTAL
	E-1	12 OF 12	SVE ELECTRICAL DETAILS		FEBRUAF	RY 2018
PREPARED FOR:	department of the air force contract no.: FA8903-16-D-0029		SVE SYSTEM DESIGN ID REMEDY OPTIMIZATION	BUILDING 4260 SVE S	SYSTEM	G-2 Sheet
ENGINEER OF RECORD DATE AIR FORCE CIVIL ENGINEER CENTER DATE	URS PROJECT No.: 	AT FORMER MA	THER AIR FORCE BASE, LIFORNIA	CONVEYANCE PIPING PR	OFILE VIEW	2 0F 12

PREPARED BY: URS

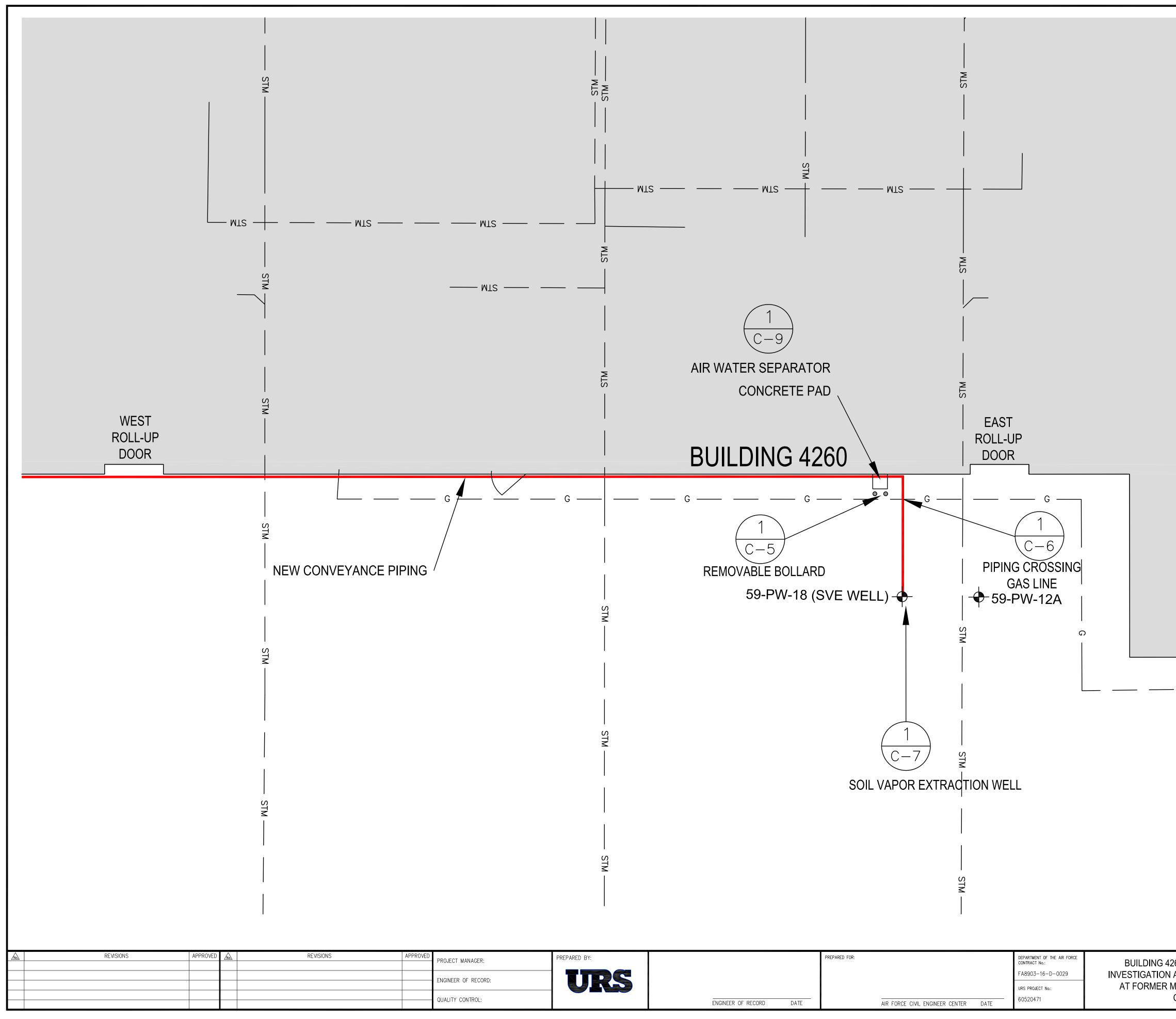
E. PLUMBING AND ELECTRICAL

LEGEND:

SB - SOIL BORING E – ELECTRICAL UTILITY MW - MONITORING WELL SS – SANITARY SEWER SVE - VAPOR EXTRACTION WELL

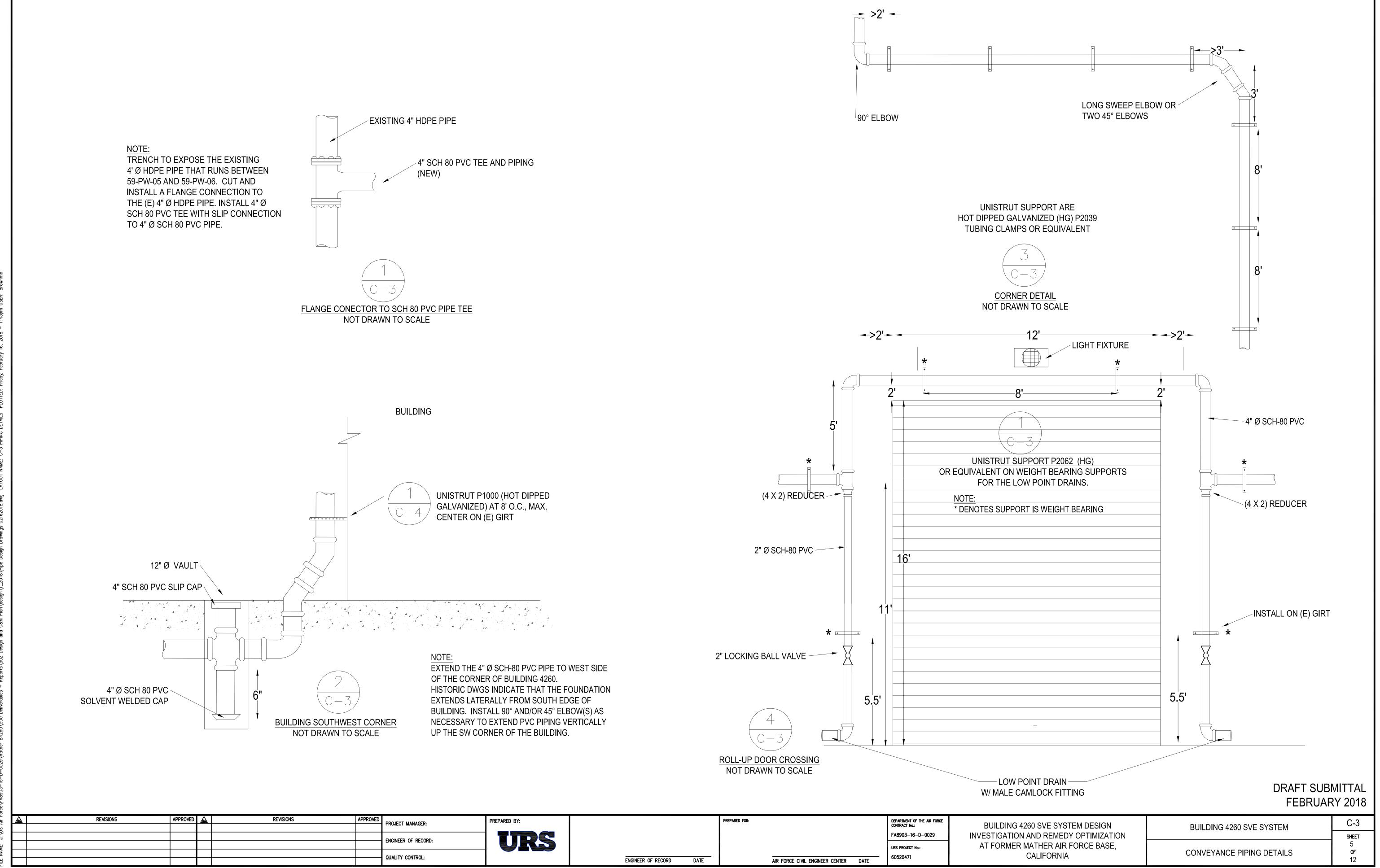

1. ALL PIPING RUNS ARE SHOWN SCHEMATICALLY. THE BEST ROUTE SHALL BE DETERMINED IN THE FIELD WITH THE ENGINEER AND SHALL BE IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL CODE REQUIREMENTS.

2. ALL CONVEYANCE PIPES SHALL BE PRESSURE TESTED PRIOR TO BACKFILLING. CONVEYANCE PIPING SHALL BE PNEUMATICALLY PRESSURE TESTED TO VACUUM psi 7 IN. Hg AND HELD FOR 1 HOUR. NO PRESSURE DROP WILL BE PERMITTED. SHOULD TESTING INDICATE LEAKAGE OR OTHER DEFECT. REPAIRS SHALL BE MADE AND PRESSURE TESTED AGAIN. IF TESTING IS PERFORMED IN PORTIONS, A FINAL TEST SHALL BE PERFORMED TO ENSURE INTEGRITY OF ENTIRE PIPE "RUN."

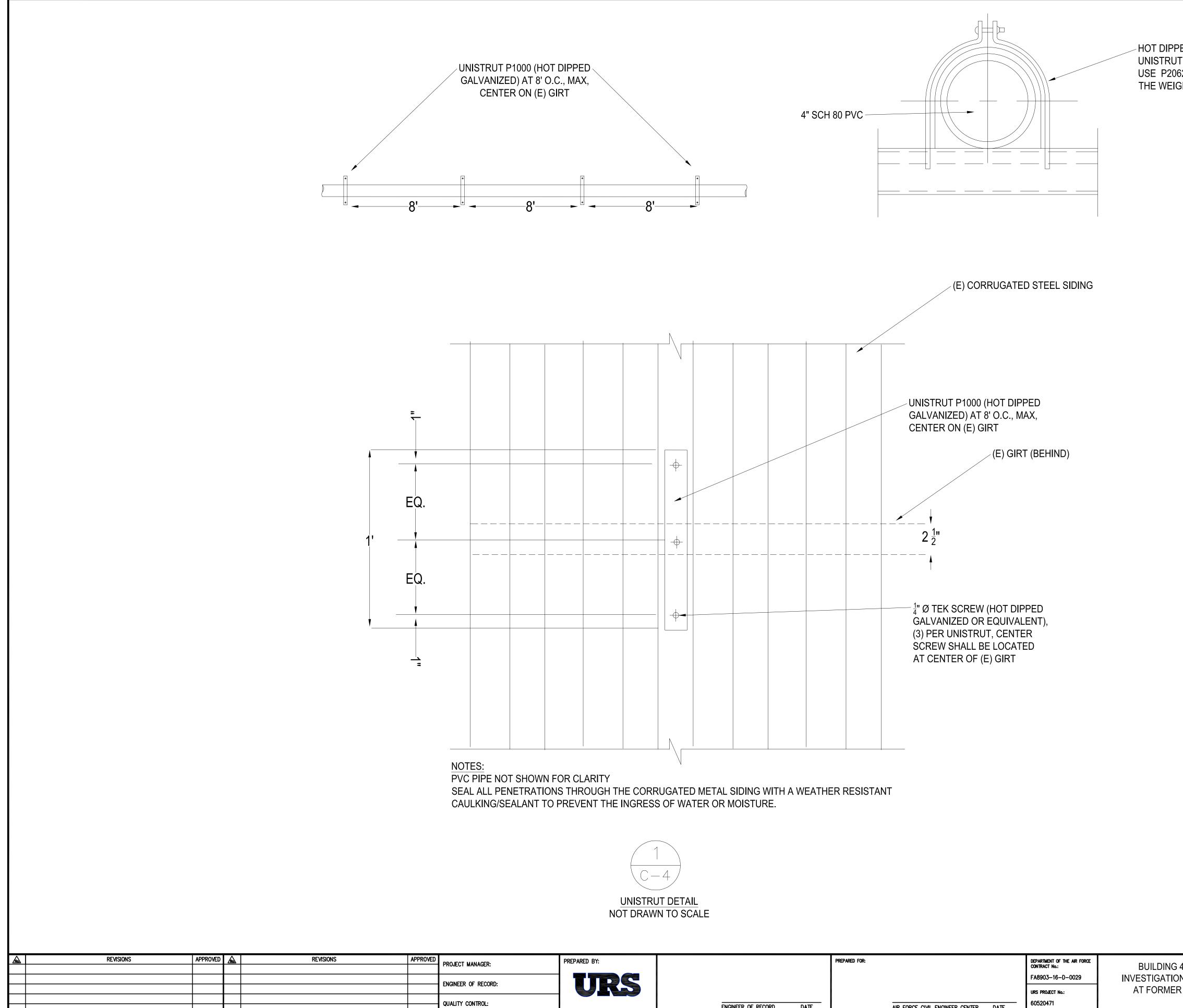

3. UNLESS SPECIALLY NOTED ON DRAWING "DO NOT GLUE," ALL PVC PIPE SHALL BE SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURERS SPECIFICATIONS.

4. ABOVEGROUND CONVEYANCE PIPING SHALL BE ATTACHED TO UNISTRUT P100 HOT DIPPED GALVANIZED (OR EQUIVALENT) AT A MAXIMUM 8-FOOT INTERVAL. USE UNISTRUT PIPE CLAMP P2039 (HG), P2062 (HG), OR EQUIVALENT AS SPECIFIED IN THE DRAWINGS.

5. ALL ELECTRICAL WIRES SHALL BE ENCLOSED IN METALLIC ELECTRICAL CONDUIT OR WATERTIGHT FLEX CONDUIT, AS APPLICABLE PER CODE.

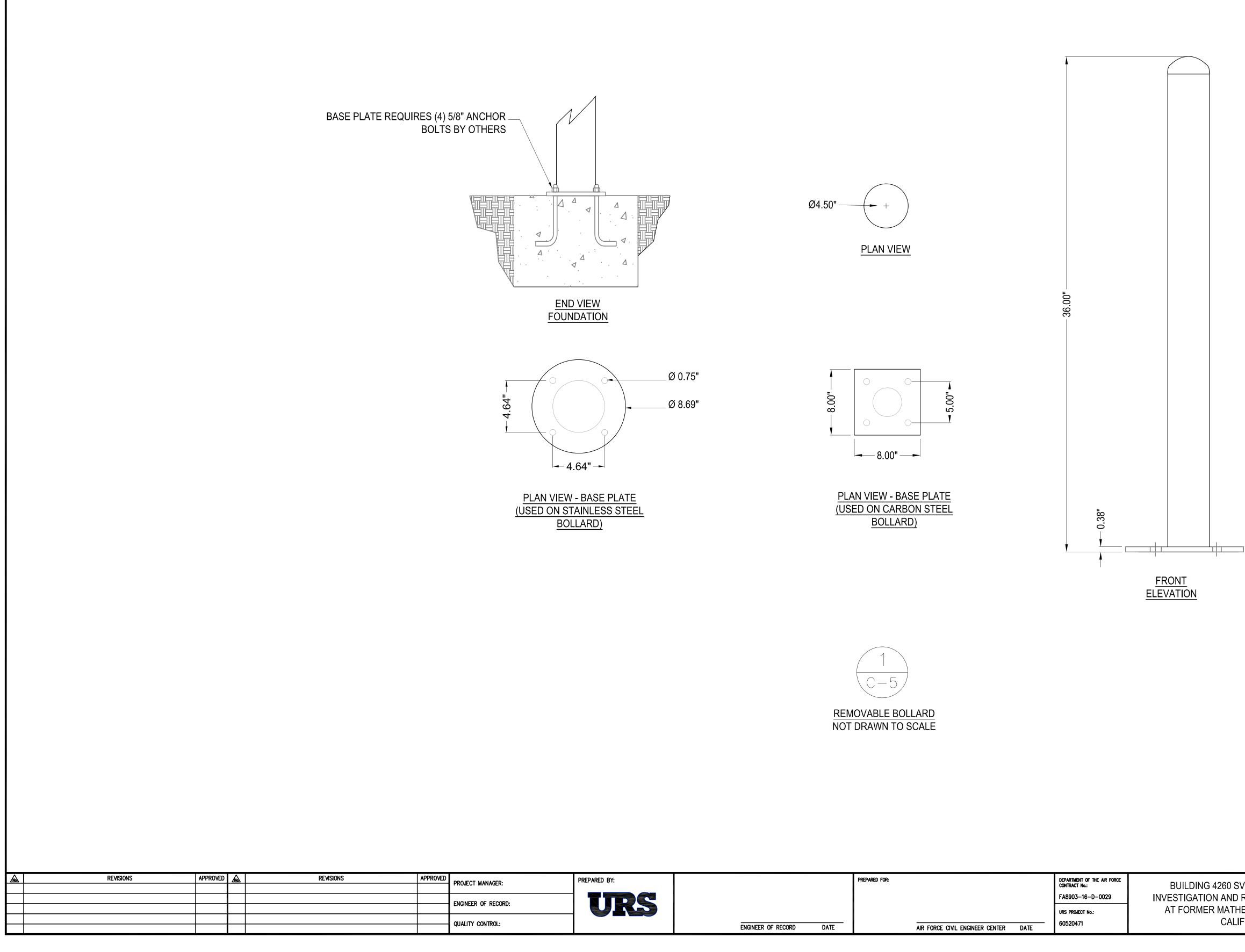


	The second secon		The second secon		EAST
				20' 11"x' 40' DRA	34" SHEET-SCALE : 1"=40' 10' 0 20' 17" SHEET-SCALE : 1"=80' 20' 0 40' FT SUBMITTAL EBRUARY 2018
		DEPARTMENT OF THE AIR FORCE CONTRACT No.:			

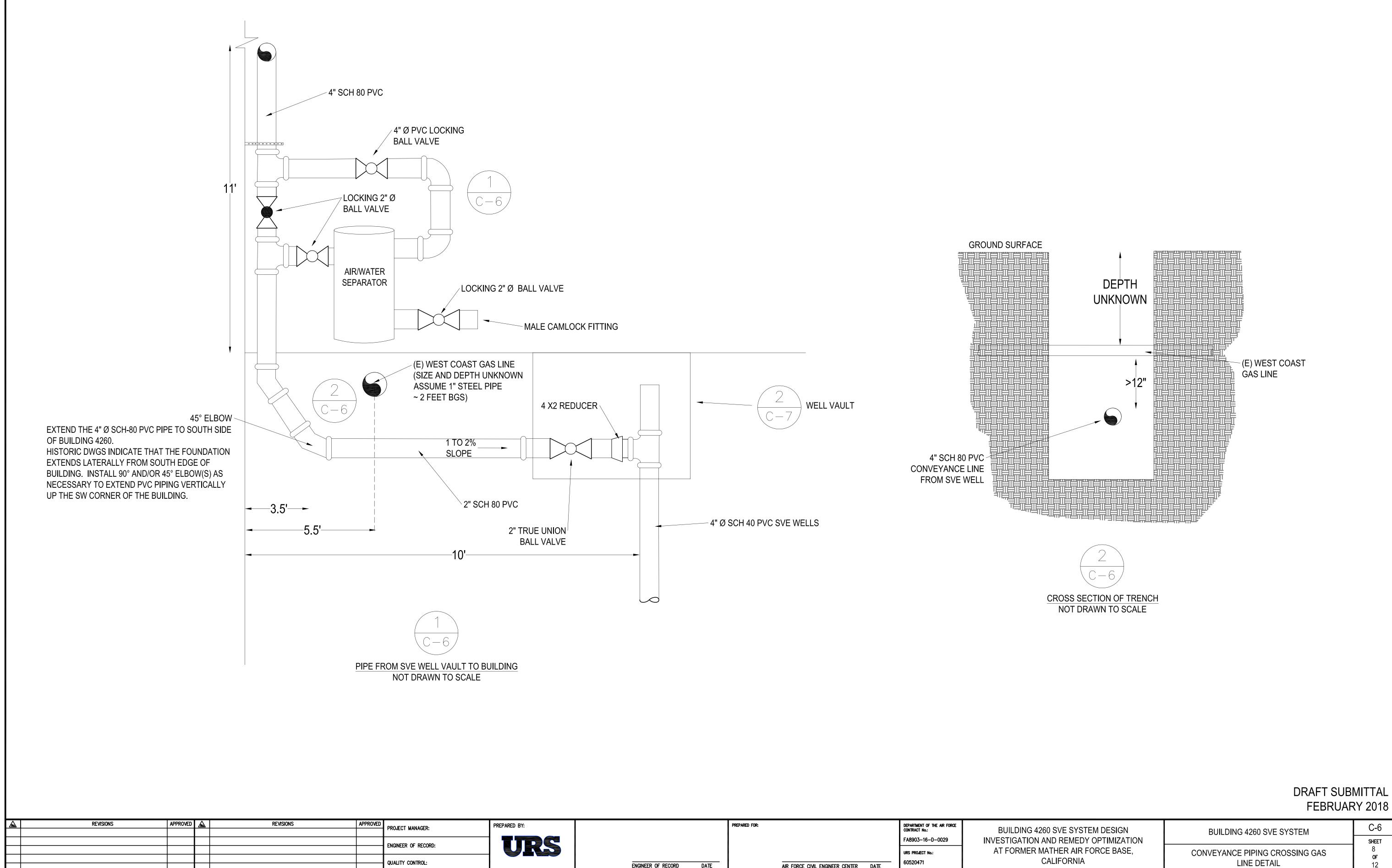


EPARED BY:	ENGINEER OF RECORD DATE	PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.: FA8903-16-D-0029 URS PROJECT No.: 60520471	BUILDING 4260 INVESTIGATION AN AT FORMER MAT CA
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE		

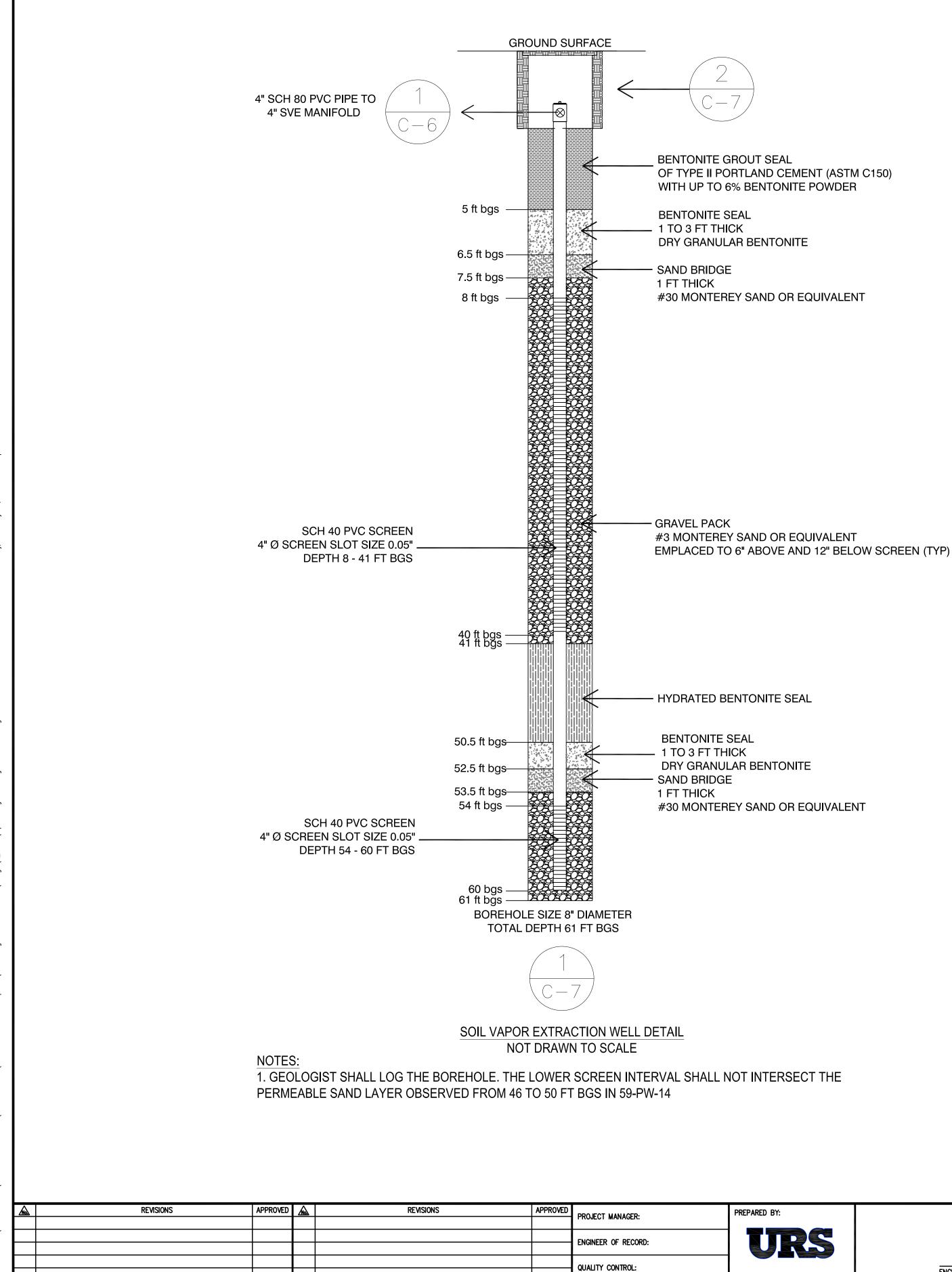
STM		
STM		
STM		
	22"x34" SHEET-SCA	LE : 1"=10'
STM	5' 2.5' 0 11"x17" SHEET-SCA 10' 5' 0 DRAFT SUBI FEBRUAR	10' MITTAL
260 SVE SYSTEM DESIGN AND REMEDY OPTIMIZATION //ATHER AIR FORCE BASE,	BUILDING 4260 SVE SYSTEM	C-2 SHEET 3
CALIFORNIA	CONVEYANCE PIPING PLAN VIEW	OF 12

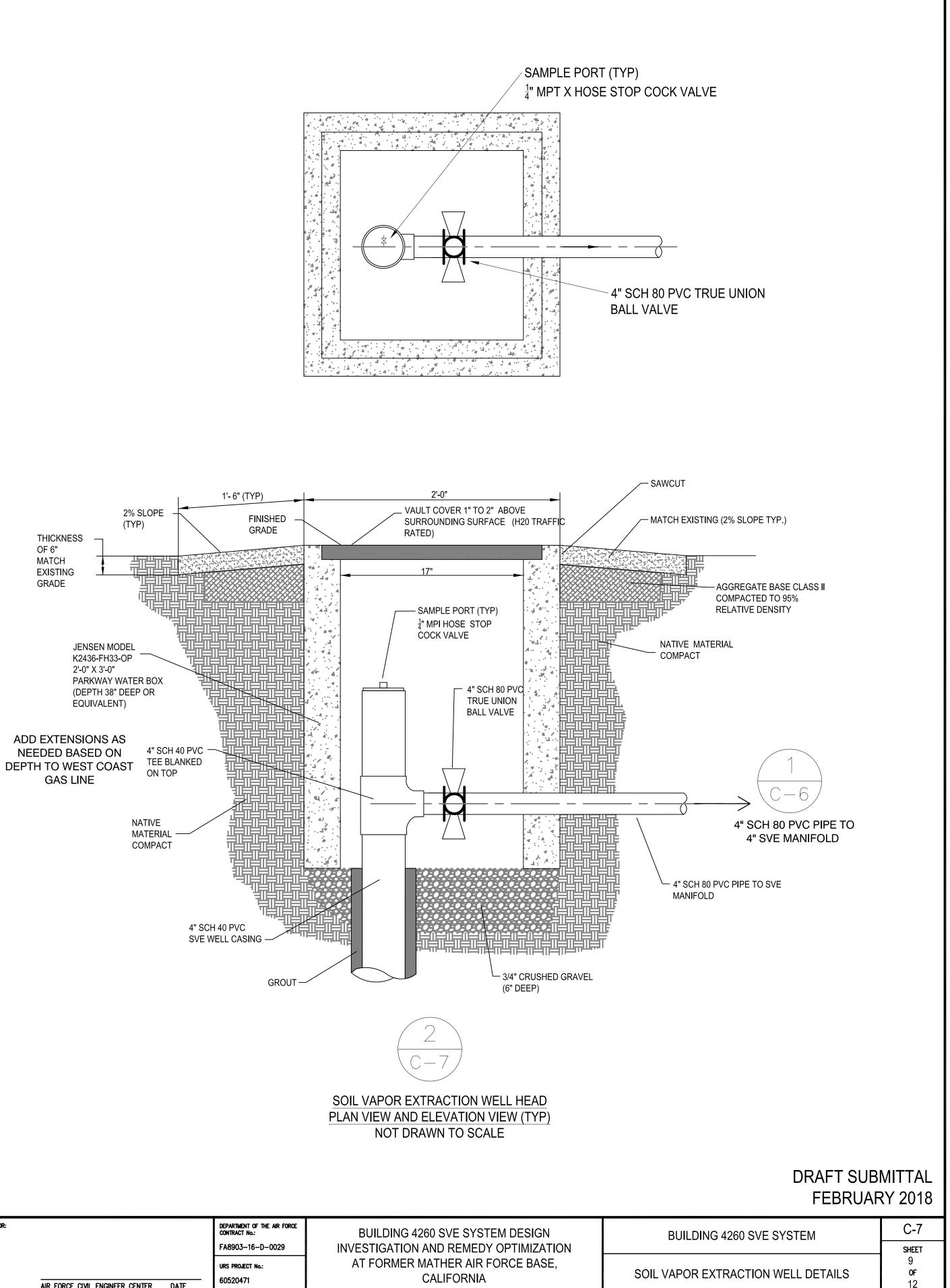


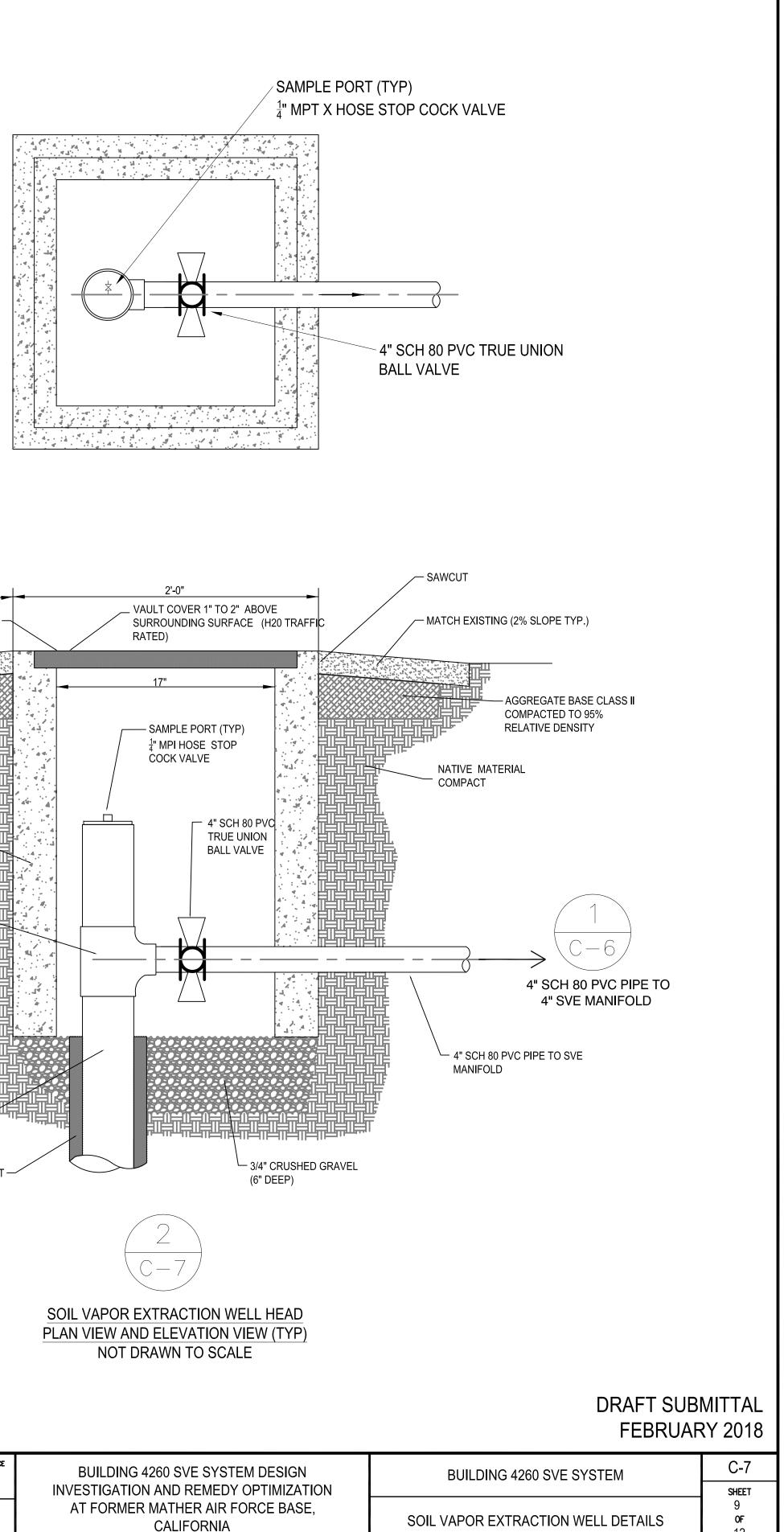
PREPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260
			FA8903-16-D-0029	INVESTIGATION AN
			URS PROJECT No.:	AT FORMER MA
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE	60520471	CA

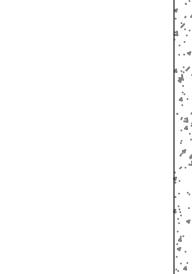


PREPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260 SVE SYSTEM DESIGN	BUILDING 4260 SVE SYSTEM	C-4
			FA8903-16-D-0029	INVESTIGATION AND REMEDY OPTIMIZATION		SHEET
VRÐ			URS PROJECT No.:	AT FORMER MATHER AIR FORCE BASE, CALIFORNIA	UNISTRUT DETAILS	6 0 F
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE	60520471			12

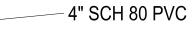

- HOT DIPPED GALVANIZED (HG) UNISTRUT PIPE CLAMP P2039 OR EQUAL. USE P2062 OR EQUAL WHEN * (i.e. SUPPORTING THE WEIGHT OF VERTICAL PIPE RUNS)

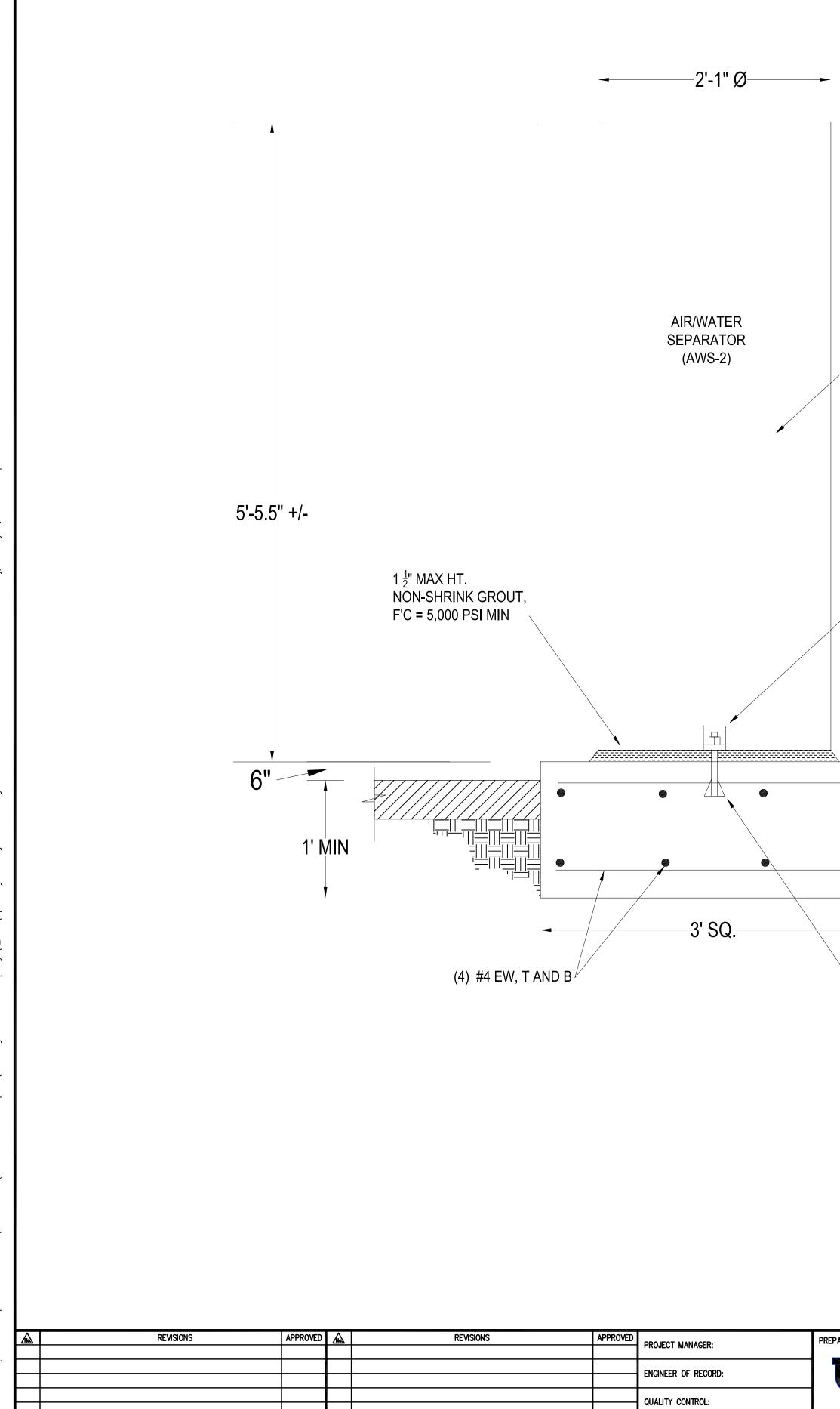

PREPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260 SVE SYSTEM DESIGN	BUILDING 4260 SVE SYSTEM	C-5
			FA8903-16-D-0029	INVESTIGATION AND REMEDY OPTIMIZATION		SHEET
VRD			URS PROJECT No.: 60520471	AT FORMER MATHER AIR FORCE BASE, CALIFORNIA	BOLLARD DETAILS	7 0F
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE	00020111			12




PREPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260
			FA8903-16-D-0029	INVESTIGATION AN
VKD			URS PROJECT No.:	AT FORMER MAT
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE	60520471	CA

REPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260
			FA8903-16-D-0029	INVESTIGATION AN
VRD			URS PROJECT No.:	AT FORMER MA
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE	60520471	CA





$\begin{array}{c} 1\\ \hline C-4 \end{array}$ UNISTRUT SUPPORT	
-12">12"- 4" GLUED CAP	

TEMPERATURE READINGS. IN ORDER TO ENSURE LAMINAR FLOW, THE HEAD PLUG WILL BE LOCATED

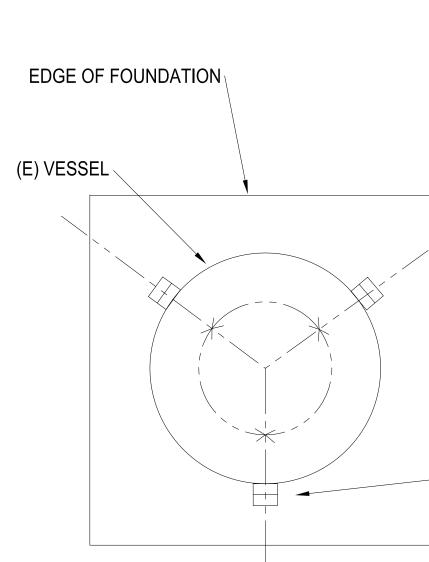
O SVE SYSTEM DESIGN ND REMEDY OPTIMIZATION THER AIR FORCE BASE, ALIFORNIA	BUILDING 4260 SVE SYSTEM	C-8
		sheet 10
	SVE MANIFOLD DETAILS	0F 12

PREPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260 SVE SYSTEM DESIGN	BUILDING 4260 SVE SYSTEM	C-9
			FA8903-16-D-0029	INVESTIGATION AND REMEDY OPTIMIZATION		SHEET
VRD			URS PROJECT No.:	AT FORMER MATHER AIR FORCE BASE,	FOUNDATION DETAILS	11 OF
	ENGINEER OF RECORD DATE	AIR FORCE CIVIL ENGINEER CENTER DATE	60520471	CALIFORNIA	FOUNDATION DETAILS	12

NOT DRAWN TO SCALE

EXPANSION ANCHOR WITH 3-⁵/₈" EMBEDDED INTO CONCRETE PER ICC ESR-1917, TYP. OF (3)

 $\frac{1}{2}$ " Ø STAINLESS STEEL HILTI KWIK BOLT TZ


3" CLR TYP.

(E) ASPHALT PAVING

(E) ANGLE CLIP AND (L 3X3X1, 4X0'-3" MIN) NEW ANCHOR, TYP. OF (3)

PLAN VIEW NOT DRAWN TO SCALE

(E) STEEL VESSEL CENTERED ON FOUNDATION (TOTAL OPERATING WT. = 1.6 K MAX)

DRAFT SUBMITTAL FEBRUARY 2018

— (E) ANGLE CLIP AND NEW ANCHOR, TYP. OF (3)

orce											
JS Air F	REVISIONS	APPROVED 🟒	REVISIONS APP	OVED PROJECT MANAGER:	PREPARED BY:		PREPARED FOR:	DEPARTMENT OF THE AIR FORCE CONTRACT No.:	BUILDING 4260 SVE SYSTEM DESIGN	BUILDING 4260 SVE SYSTEM	E-1
NE: C: ∖U				ENGINEER OF RECORD:	URS			FA8903-16-D-0029 URS PROJECT No.:	INVESTIGATION AND REMEDY OPTIMIZATION AT FORMER MATHER AIR FORCE BASE,		SHEET 12
FILE NAN				QUALITY CONTROL:		ENGINEER OF RECORD DATE		60520471	CALIFORNIA	SVE ELECTRICAL DETAILS	0F 12

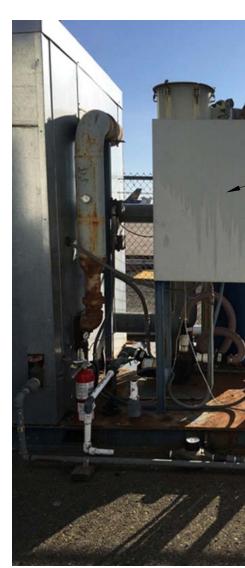
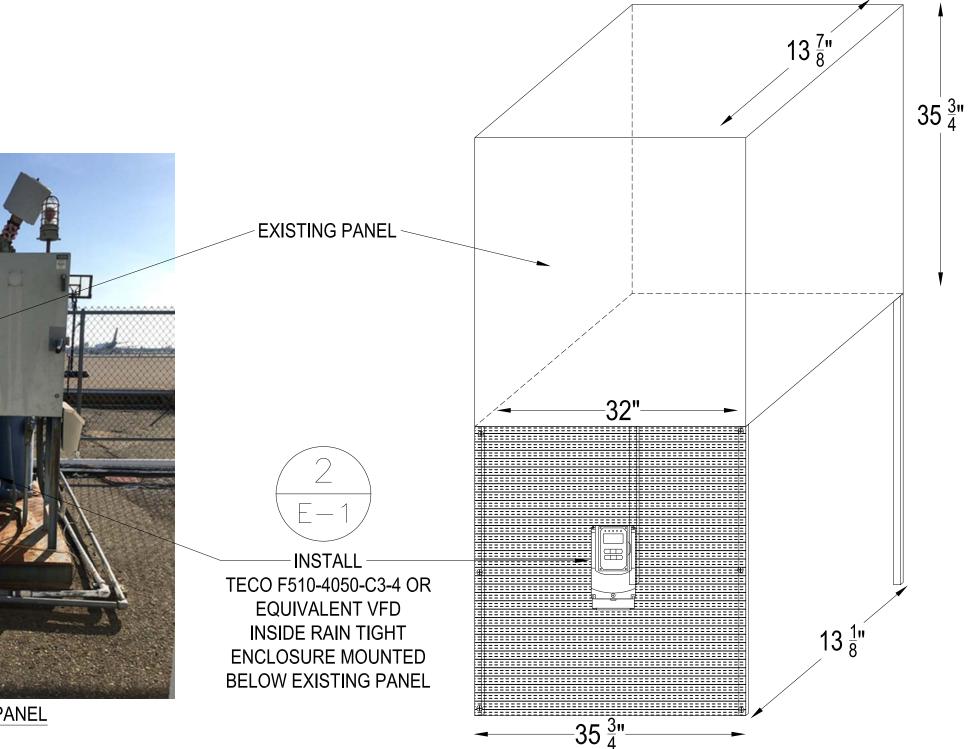



IMAGE OF EXISTING PANEL

INSTALL A VFD TO CONTROL THE SPEED OF THE SVE BLOWER MOTOR. THE VFD SHALL BE INSTALLED INSIDE OF A PROTECTIVE PANEL IN ACCORDANCE WITH THE VFD MANUFACTURERS' RECOMMENDATIONS. MOUNT THE PANEL BELOW THE EXISTING ELECTRICAL AND CONTROLS PANEL. THE EXISTING CABINET IS 35 ¾ INCHES WIDE, 35 ¾-INCHES TALL AND 13-7/8 INCHES DEEP. THE HEIGHT OF THE SPACE UNDER THE EXISTING CABINET IS 32-3/8-INCHES. THE SUPPORTS ARE 2-INCHES WIDE. THE VFD PANEL MUST THEREFORE BE MORE THAN 32 INCHES WIDE TO USE THE EXISTING SUPPORTS. AIR/WATER SEPARATOR CONTROLS:

1. INSTALL A PRESSURE SWITCH WITH AN ADJUSTABLE 0 TO 30 INCH MERCURY VACUUM RANGE (DWYER BOURDON TUBE PRESSURE SWITCH DA-31-153-2 OR EQUIVALENT) IN THE SVE CONVEYANCE LINE TO THE SVE BLOWER, NEAR THE SVE CONTROL PANEL. CONNECT THE SIGNAL WIRES TO THE EXISTING SVE SYSTEM ALARM INTERLOCKS TO SHUT OFF THE SVE MOTOR WHEN A HIGH VACUUM CONDITION EXISTS. THE HIGH VACUUM SETPOINT WILL BE DETERMINED IN THE FIELD, BUT IS EXPECTED TO BE BETWEEN 10 AND 12 INCHES MERCURY.

2. REPLACE THE EXISTING ANALOG AUTODIALER WITH A SENSAPHONE CELL 682 OR EQUIVALENT CELLULAR TRANSMITTER. WIRE THE CELL 682 TO THE SVE SYSTEM ALARM INTERLOCKS TO NOTIFY APPROPRIATE PERSONNEL OF ALARM CONDITIONS SUCH AS A HIGH VACUUM ALARM THAT HAS RESULTED IN A SYSTEM SHUT DOWN.

EXISTING PANEL WITH VFD INSTALL NOT DRAWN TO SCALE

APPENDIX B

Field Forms

Daily Tail Gate Meeting

Air Sampling Data Sheet

Location Data Sheet

Log of Drilling Operations

Lithologic Log

Well Construction Details

New SVE Well Stabilization Parameters

Downhole Soil Gas Sampling Data Sheet

SVM and SVE PID and Water Level Log

SVE System Process Readings Log

Americas

Daily Tailgate Meeting

S3NA-209-FM5

Job Location:	Date:
AECOM Site	Person Conducting
Supervisor:	Tailgate Meeting:
AECOM Site	AECOM Safety Officer
Supervisor Phone:	Name & Phone:

List activities to be performed today:		
Muster Point:	Spill Kit Location:	

First Aid Kit Location:	Fire Extinguisher Location:	

Have all personnel reviewed and understand the site-specific safety plan?	Yes No*
Are current Pre-Job Hazard Assessments in place for each of the tasks to be performed today and understood by all?	Yes No*
Does each subcontractor have hazard assessments (e.g., THA, JSA, JHA) for their activities?	Yes No* N/A
Are any required permits in place for the applicable tasks to be performed today and understood by all? Identify required permits and permit #s:	Yes No* N/A
Have all members of the work team confirmed understanding of the work, hazards, and controls/ mitigation?	Yes No*
Have work areas been properly cordoned-off to protect workers, site staff, and the public?	Yes No* N/A
Have equipment checks been completed, documented, and reviewed?	Yes No* N/A
Do all site workers understand injury/ intervention reporting requirements including immediately notifying the AECOM Site Supervisor of any injury near miss, unsafe condition or hazard observation?	Yes No*
* if No. there would account he would account it account is a stick in a second to develop a stand	

* if No, then work cannot be performed until corrective action is completed and documented.

Topics covered in today's tailgate meeting:			

Other Items Discussed Today:	Stop Work Authority & Obligation
	* All employees will stop the job any time anyone is concerned or uncertain about safety.
	* All employees will stop the job if anyone identifies a hazard or additional mitigation not recorded on the THA.
	* All employees will be alerted to any changes in personnel or conditions at the worksite.
	* All employees will stop the job and reassess a task, hazards, and mitigations, and then amend the THA as needed.

SITE WORKERS (including AECOM Contractors and Subcontractors): By signing here, you are stating the following:

* You have been involved in reviewing the THAs and understand the hazards and control measures associated with each task you are about to perform.

* You understand the permit to work requirements applicable to the work you are about to perform (if it includes permitted activities).

* You are aware that no tasks or work (that is not risk-assessed) is to be performed.

* You are aware of your authority and obligation to 'Stop Work'.

I arrived and departed fit for duty:

* You are physically and mentally fit for duty.

* You are not under the influence of any type of medication, drugs, or alcohol that could affect your ability to work safely.

* You are aware of your responsibility to immediately report any illness, injury (regardless of where or when it occurred), or fatigue issue you may have to the AECOM Supervisor.

* You signed-out uninjured unless you have otherwise informed the AECOM Supervisor.

Signature	Initials & Sign In	Initials & Sign Out Time
Signature		
	In & Fit	Out & Fit
	In & Fit	Out & Fit
	In & Fit	Out & Fit
	In & Fit	Out & Fit
	In & Fit	Out & Fit
	In & Fit	Out & Fit
	Signature	

(Attach additional Site Worker sign-in/out sheets if needed)

SITE VISITOR / SITE REPRESENTATIVE										
Name	Company Name	Arrival Time	Departure Time	Signature						

To be completed once activities for the day have been concluded:									
Were there any Incidents, Near Misses or Observations?	☐ Yes ☐ No	If yes, details:							
Were there any 'Stop Work' interventions?	☐ Yes ☐ No	If yes, details:							
Were there any areas for improvement noted?	☐ Yes ☐ No	If yes, details:							
At the conclusion of the day, the job site is being left in a safe condition and there were no reports of injury or first aid.	☐ Yes ☐ No	AECOM Supervisor Signature:							

URS Air Sampling Data Sheet

Installation: P	roject:	Event:
Boring Name:		Date:
Location Description:	Direction and Distance from MW Number or Building	Number and Corner)
At what height above ground was sampler	r placed?	_
Were existing volatiles found during scree	ening removed?	_
Were any new volatiles in the sample area	a?	_
Weather Conditions:		_
Rain in last 24 hours?	Sampler(s):
SAMPLE TRAIN LEAK CHECK		
Initial Vacuum Reading:	Final Vacuum Reading:	
(Complete sample train)		_
Sampling Method:		_
PID Serial Number:		_
Sample Start (Date/Time):		_
Sample End Time (Date/Time):		_
NORMAL SAMPLE		
Sample Number:	Sample Number:	
Canister Number:		
Initial Canister Vacuum:	Final Canister Vacuun	1:
DUPLICATE SAMPLE		
Sample Number:	Sample Number:	
Canister Number:		
Initial Canister Vacuum:	Final Canister Vacuun	n:

Graphics\Data Mgmt\Mather\10-16-Mather-Air-Sampling-Data-Sheet.indd - VMG 10/21/2016 SAC

URS Location Data Sheet

H:\Graphics\Data Mgmt\Mather\04-15-MatherLocation-Data-Sheet.indd - VMG 04/16/15 SAC

Installation:			Date Location Established:						
Project:									
Location ID:			Location Prox	imity: On Depo	t / Off De	pot			
Type of Location:	Surface Scrape	Borehole	Extraction Well	Monitoring Wel	I CPT	Hand Auger			
Location Descrip	<u>tion:</u>								

Survey Data:	Borehole Data:	
Northing:	Total Depth:	Units:
Easting:	Diameter:	Units:
Datum:	Drilling Method:	
Surface Elevation/Units:	Driller(s):	
	Drilling Company and Address:	
Projection:		
Zone:		
How was survey data gathered?		
	Surface Scrape/Test Pit Data:	
Surveyor:	Excavation Method:	
Surveyor Company and Address:		
	Excavator:	
	Excavation Company and Addres	S:

Boring ID:

			Page 1 of
Installation:	Project:	Event:	
Total Depth (ft bgs):	Start Date:	Finish Date:	
Geologist:		Instrument/Units:	
Drilling Company:		Driller:	
Drilling Method:		Rig Type:	
Drill Bit Type and Size:			

Boring Location (Street Address or Description):

 Depth Below Surface (ft) 	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
-	-								-
1— - -	-								1
2 — 	-								- 2 -
3 —	-								-
4 —	-								- 4 -
 5	-								_ 5
6 —	-								6
 7	-								
	-								- - - 8
- 9	-								- - - 9
-	-								-
10 —]			I			H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16	'15 SAC	└── 10

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
10 —									- 10 -
 11									 - 11 -
 12									12 12
 13									_ 13
 14									14 14
 15									15 15
- 16 — _									_ 16
- 17 — _									_ 17
 18									_ 18 _
 19									19
							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16	/15 SAC 2	2 20

Page 2 of ____

Boring ID:

Start [Date:			Geo	ologist:				
	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
20 —									- 20 -
									 -
21 —									21
									_
22									22
_									-
23									- 23
_									
_									-
24									- 24
									_
25 —									- 25
_									-
									- 26
_									
_									-
27 —									- 27 -
28 —									- 28
_									-
29									- 29
-									-
									F
30 —		I	l	I			H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16	/15 SAC :	└── 30

Page 3 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
30 — 31 —									- 30 31 - 31
 32 									32 32
33 — – – 34 —									
- - 35 -									- - - - - -
- 36 — - -									- 36 - -
37 — – – 38 —									
- - 39 —									- - - 39
 40 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	5 SAC 4	40

Page 4 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
40 —									- 40
_									-
_	-								_
41 —	-								<u> </u>
-									-
_									_
42	-								42
-	-								-
_									
43 —	-								- 43
-	-								-
									-
44									44
-	-								-
									-
45 —									- 45
-	-								-
_	-								<u> </u>
46 —									- 46
-+0	-								- 40
									-
									- 47
4/									- 4/
	-								<u> </u>
-									-
48 —									48
	-								L
-									-
49 —									- 49
_									
_	-								F
50 —]			I			 H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	15 SAC :	50

Page 5 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
50		U R			ω σ	μ.			□ ∽ - 50 - 51 - 51 - 52 - 53 - 53 - 53 - 53 - 55 - 55 - 55 - 56 - 56 - 57
							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	15 SAC (- - - - - - 59 - - - - - - - - 60

Page 6 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
60 —									60
_									-
_									_
61 —									- 61
_									-
-									-
62									62
_									_
-									-
63 —									63
_									_
 64									_ 64
- 04									- 04
									_
- 65 —									- 65
									- 00
									-
									- 66
-									-
									-
67 —									67
-									-
									_
68 —									- 68
_									-
_									-
69 —									- 69
_									-
_									ŀ
70 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/	15 SAC 7	— 70

Page 7 of ____

Boring ID:

Start [Date:			Geo	ologist:				
	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
70 —									- 70
 71									 - 71 -
 72									 _ 72
 73									 73
 74									 74
- - 75									- - - 75
- - 76									- 76
- - 77									- 77
-									-
78 — 									78
79 — 									79 _
80 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16	/15 SAC :	68

Page 8 of ____

Boring ID:

Start I	Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
80 —									- 80
									-
- 81 —									- 81
_									-
									_ 82
-									-
_									-
83 —									- 83
84 —									— 84
_									-
- 85 —									- 85
_									_
-									
86 —									- 86
_									-
87 —									- 87 -
_									
88 —									- 88
_									-
									- 89
-									_
_									-
90 —	1	I	I	I	I		 H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/15	5 SAC 9	└─ ─ 90

Page 9 of ____

Boring ID:

Start I	Date:			Geo	ologist				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
90 — 91 — 92 —									90
93 — 93 — 94 —									- - - - - - - - - - - - - - 94
95 — 96 —									95 95 96
97 — 97 — 98 —									97 97 98
99 — - - - 100 —									99 99 100

Page 10 of ____

H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/15 SAC 10

Boring ID:

Page 11 of ____

Start [Date:			Geo	ologist:		•		
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
100 —									100
									- 101
_									-
									 -
102									102
_									-
_ 103 —									- 103
-									-
									-
104 —									104
_									-
_ 105 —									- 105
									- 105
									_
106 —									- 106
_									
-									-
107 —									107
									-
108 —									- 108
_									_
_									-
109 —									- 109
_									-
110 —									L 110
							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/*	15 SAC 1	1

Boring ID:

Page 12 of ____

Start I	Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
110 —									110
									 _
- 111 —									- 111
_									-
									 -
112									112
									-
_ 113 —									- 113
-									-
									 -
114 —									114
_									-
-									-
115 —									- 115 -
116 —									- 116
_									-
-									-
117 —									
									-
									- 118
_									_
_									-
119 —									- 119 -
									–
- 120 —									120
-							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	15 SAC 12	2

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
120 —									120
_									_
-									-
121 —									121
									-
 122									122
_									-
									_
123 —									- 123
_									
-									-
124									124 _
									—
_ 125 —									- 125
-									-
126 —									- 126
_									-
_									-
127 —									- 127
_									_
-									-
128 —									
									\vdash
 129 —									- 129
									-
130 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/	15 SAC 1	130

Page 13 of ____

Boring ID:

Page 14 of ____

Start [Date:			Geo	ologist:		·		
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
130 —									130
									-
131 —									- 131
_									-
422									-
132									132 -
									-
133 —									- 133
_									-
_ 134 —									- 134
_									-
_									-
135 —									- 135 -
									-
136 —									- 136
_									-
407									-
137 —									
									-
138 —									- 138
_									- -
_ 139 —									- 139
-									-
-									 -
140 —				I			H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	5 SAC 1	└ <u></u> 140

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
140 —									140
									_
_ 141 —									- 141
-									-
_									–
142									142
_									-
_									-
143 —									- 143
_									_
_ 144 —									- 144
- 144									- 144
_									–
									- 145
_									-
146 —									- 146
_									_
_									-
147 —									<u> </u>
									—
_ 148 —									- 148
- 140									- 140
									╞
 149 —									- 149
_									╞
									F
150 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	5 SAC 1	150

Page 15 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
150 —									150
									–
 151 —									- 151
_									-
_									-
152									152
_									
-									-
153 — –									- 153 -
									<u> </u>
154									154
_									_
_									-
155 —									- 155
									–
 156 —									- 156
-									-
									-
157 —									- 157
_									
450									-
158 — _									158
 159 —									- 159
_									╞
_									-
160 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	5 SAC 1	L 160

Page 16 of ____

Boring ID:

Start [Date:			Geo	ologist:		·		
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
160 —									160
									-
_ 161 —									- 161
_									-
									-
162									162
_									-
402									-
163 — _									- 163 -
									F
164 —									164
_									-
_									-
165 —									- 165 -
									-
166 —									- 166
_									-
									-
167 —									- 167
_									–
_ 168 —									- 168
-									-
									F
169 —									- 169
_									F
_									-
170 —		I	I	I	I	I	H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	 5 SAC 1	¹ / ₇ 170

Page 17 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
170 —									170
_									
_ 171 —									- 171
									- 171
									-
172									172
_									-
_									-
173 —									- 173
_									_
_ 174 —									- 174
									- ""
									-
 175 —									- 175
_									-
_									_
176 —									- 176
_									_
_									-
177 —									177
									-
 178 —									- 178
_									-
_									 -
179 —									- 179
_									
_									-
180 —	l	I	I	I		l	H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/	 15 SAC 1	L 180 ଃ

Page 18 of ____

Boring ID:

Start [Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
180 —									180
_									–
_ 181 —									- 181
- 101									- 101
									-
182									182
-									-
_									-
183 —									- 183
_									
404									-
184 —									184 -
									–
 185 —									- 185
-									-
186 —									- 186
_									E
-									-
187 —									- 187
_									_
_ 188 —									- 188
- 00									- 100
									- 189
_									-
									F
190 —							H:\Graphics\Data Mgmt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16/1	5 SAC 1	190

Page 19 of ____

Boring ID:

Page 20 of ____

Start I	Date:			Geo	ologist:				
Depth Below Surface (ft)	Sample Interval	Core Run/ Recovery	Field Sample ID	BH/BZ (PID/FID)	Soil Core PID (ppm)	Time (Military)	Drilling Notes	Lithology	Depth Below Surface (ft)
190 —									190
_ 191 —									- 191
-									- 131
									-
 192									192
_									_
_									-
193 — _									
									—
 194									- 194
_									-
_									-
195 —									- 195
									_
_ 196 —									- 196
- 190									- 190
197 —									- 197
									_
_									_
198 — _									198
_ 199 —									- 199
_									-
200 —							H:\Graphics\Data Mamt\Mather\04-15-Mather-Drilling-Log.indd - VMG 04/16//	5 SAC 2	200

Lithologic Log

Page _____ of _____

Installation: ____

Project:

Locatio	n:		Boring I	Number:		Dat	e:	Geo	logist:			
Starting Depth	Main Mod:	Gravelly	Sar	ndy S	Silty	Clayey	Pred Lith:	Gravel	Sanc		Silt	Clay
Deptil	Minor/Trace:	Gravel	Sa	nd	Silt	Clay	Organics:	Ν	0-5%	6	-10%	>10%
	Color:			Munsell:			Grain Size:	VFS:	FS:	MS:	CS:	G:
	Grading:	Well	Mode	erate F	oor	Gap	Roundness:	Rndd	Sbrnd	ld S	ubang	Ang
	Lithics:	Qtz:	Mafie	c :	Volc:	Gran		'R:	Mica:		ther thics:	
	2nd Porosity:			Density (Sands)	VL L	MD D VD	Consistency (Silt & Clay)	VS	Soft	Firm	Hard	VH
	USCS:	GW G	P GM	GC	SW	SP S	M SC	ML C	CL OL	MH	CH	OH
Fadia a	Dilatancy	No Slow	Rapid	Plasticity:	No Lo	w Med High	Staining					
Ending Depth	Moisture:	Dry	Damp	Moist	Wet	Sat	Interbeds:					
	Observations:								No Rec (De	covery: pth)		
Starting	Main Mod:	Gravelly	Sar	ndy S	Silty	Clayey	Pred Lith:	Gravel	Sanc	1	Silt	Clay
Depth	Minor/Trace:	Gravel	Sa	nd	Silt	Clay	Organics:	N	0-5%	6	-10%	>10%
	Color:			Munsell:			Grain Size:	VFS:	FS:	MS:	CS:	G:
	Grading:	Well	Mode	erate F	oor	Gap	Roundness:	Rndd	Sbrnd	ld S	ubang	Ang
	Lithics:	Qtz:	Mafie	D:	Volc:	Gran	FSP	R:	Mica:		ther thics:	
	2nd Porosity:			Density (Sands)	VL L	MD D VD	Consistency (Silt & Clay)	VS	Soft	Firm	Hard	VH
	USCS:	GW G	P GM	GC	SW	SP S	M SC	ML C	CL OL	MH	СН	OH
Ending	Dilatancy	No Slow	Rapid	Plasticity:	No Lo	w Med High	Staining					
Ending Depth	Moisture:	Dry	Damp	Moist	Wet	Sat	Interbeds:					
	Observations:								No Rec (De			
Starting	Main Mod:	Gravelly	Sar	ndy S	Silty	Clayey	Pred Lith:	Gravel	Sanc	l	Silt	Clay
Depth	Minor/Trace:	Gravel	Sa	nd	Silt	Clay	Organics:	Ν	0-5%	6	-10%	>10%
	Color:			Munsell:			Grain Size:	VFS:	FS:	MS:	CS:	G:
	Grading:	Well	Mode	erate F	Poor	Gap	Roundness:	Rndd	Sbrnd	ld S	ubang	Ang
	Lithics:	Qtz:	Mafie	C:	Volc:	Gran	FSP	R:	Mica:	0 Li	ther thics:	
	2nd Porosity:			Density (Sands)	VL L	MD D VD	Consistency (Silt & Clay)	VS	Soft	Firm	Hard	VH
	USCS:	GW G	P GM	GC	SW	SP S	M SC		CL OL	MH	СН	OH
	Dilatancy	No Slow	Rapid	Plasticity:	No Lo	w Med High	Staining					
Ending Depth	Moisture:	Dry	Damp	Moist	Wet	Sat	Interbeds:					
	Observations:								No Rec (De	covery: pth)		

Inst	allation	Project	Event Well I.D.
Sup	ervised by:	Date:	Drilling Company:
Bor	ing No:	Construction Method:	Well Type: SVE SVMW GWEW GWMW PZW Of
A	Well I.D.		Surface Completion : Flush Mount / Stickup
	Casing Type/Amount		Centralizer Spacing/Number Used
	Casing Diameter		
	Top of Screen		Type/Amount of Grout
	Screen Diameter/Type/Len	gth	Gallons of Water
	Slot Size/Percent Open	-	Sacks of Cement
	Bottom of Screen		Top of Bentonite Seal
	Total Well Casing Depth -		Type/Amount of Bentonite
B	Well I.D.		Top of Sand Bridge
	Casing Type/Amount		Type/Amount of Sand Bridge
	Casing Diameter		Top of Filter Pack
	Top of Screen		Type/Amount of Filter Pack
	Screen Diameter/Type/Len	gth	
	Slot Size/Percent Open		Top of Bentonite Seal
	Bottom of Screen		Type/Amount of Bentonite
			Top of Filter Pack
	Total Well Casing Depth —		
_			Type/Amount of Filter Pack
C	Well I.D Casing Type/Amount		
			Top of Bentonite Seal
	Casing Diameter		Type/Amount of Bentonite
	Top of Screen		Top of Filter Pack
	Screen Diameter/Type/Len	gth	Type/Amount of Filter Pack
	Slot Size/Percent Open		Bottom of Filter Pack
	Bottom of Screen		
	Total Well Casing Depth -		Backfill Material
			Boring Diameter
	Igmt\Well-construction-details3Up.cdi		Total Depth of Boring

Mather B4260 - New SVE Well Stabilization Parameters Field Readings:

Sampler's Initials: _____

Well ID: SVE well 59-PW-18 (8 to 40 ft bgs)

Date	Time	Purge time (sec)	Methane (% LEL)	O2 (%)	CO2 (ppmv)	PID (ppmv)	Notes:

Note: Purge Time (sec) = 60(PV)/scfh. Purge Volume (PV) = 4 x Depth x 0.005 x Diameter². All wells have a 1" diameter. The calcuation for PV has 0.005 as a conversion factor that accounts for pi, inches to feet and radius to diameter.

URS Downhole Soil Gas Sampling Data Sheet

Installation:	Project:	Event:	
Boring Name:		Date:	
Location Description:			
	(Direction and Distan	ce from MW Number or Building Number and Corner)	
Arrival Time:	Lithology at Sample Point: _	Initial Vacuum Reading:	
Departure Time:	Sampler(s):	(Rain in last 24 hours?)	
		mple. The system must hold vacuum for a minimum of n fails the leak check procedure, check all fittings and re ng: Final Vacuum Res	-test the system.)
complete sample train: _ After probe placement,			
Sampling Method: D Slide	Hammer 🔲 Hand Auger Hole 🔲	Hand Drive 🔲 Pneumatic 🔲 Hydraulic (Direct	Push) 🔲 Well
PID Serial Number:	PID Readings (ppm	<i>v</i>): Pre: Maximum:	Post:
Apparent Moisture: Dry	Moist Saturated Backfill	Material: 🔲 Soil 🔲 Grout 🔲 Bentonite 🗌	Other:
Distance Probe Driven:	Length	Retracted:	
NORMAL SAMPLE		Sample Time:	
Sample Number:			
Canister Number:		Attempts to Sample:	
Begin/End Depths of Samp	ble: /	Evacuation Time: (Note: Two liters/minute or less)	
Vacuum:	(-) inch H		
	(-) inch H		(-) inch Hg
FIELD DUPLICATE		Sample Time:	
Sample Number:		_ Canister Number:	
Initial Canister Vacuum:	(-) inch H	g Final Canister Volume:	(-) inch Hg

SVM and SVE PID and Water Level Log B4260 - Former Mather Air Force Base

Sample Location	Sample Depth (feet bgs)	Well Diameter (in.)	Depth to Bottom (ft)	MEASURE Total Well Depth (ft bgs)	MEASURE Depth to Water (ft bgs)	PID (ppmv)	Notes
59-PW-05	10-20	2	20	19.2			
59-PW-05	30-40	2	40				
59-PW-05	50-60	2	60	59.25			
59-PW-05	70-90	2	90				
59-PW-06	11-21	2	21				
59-PW-06	31-41	2	41	39.1			
59-PW-06	51-61	2	61	59.13			
59-PW-06	70-90	2	90	89.2			
59-PW-07	10-20	2	20				
59-PW-08	10-20	2	20	19.56			
59-PW-09A	10-11	1	11				
59-PW-09B	20-21	1	21				
59-PW-10A	8-10	1	10	9.7			
59-PW-10B	20-22	1	22				
59-PW-11A	8-10	1	10				
59-PW-11B	20-22	1	22				
59-PW-12A	8-10	1	10				
59-PW-12B	20-22	1	22				
59-PW-13A	8-10	1	10	9.7			
59-PW-13B	20-22	1	22				
59-PW-14	30-32	1	32	31.83			
59-PW-14	60-62	1	62	61.61			
59-PW-14	80-82	1	82				
59-PW-15	8-10	1	10	10.19			
59-PW-15	20-22	1	22				
59-PW-15	30-32	1	32				
59-PW-15	60-62	1	62				
59-PW-15	80-82	1	82				
59-PW-16	8-10	1	10	9.65			
59-PW-16	20-22	1	22				
59-PW-16	30-32	1	32				
59-PW-16	60-62	1	62				
59-PW-16	80-82	1	82				
59-PW-17	8-10	1	10	9.73			
59-PW-17	20-22	1	22				
59-PW-17	30-32	1	32				
59-PW-17	60-62	1	62	61.54			
59-PW-17	80-82	1	82				
59-PW-18	8-40	4					

Mather - B4260 SVE System Process Readings Log

		Month		Year	
	Date:				
Weekly System Readings	Time:				
	Operator:				
Elec. Meter	(Kwh #20)				
Hour Meter	(Hour)				
Fire EX	(color)				
AWS-1	(gal)				
Dil. Air	(% closed)				
	Flow (units)				
Inlet manifold	Pressure (units)				
	Temperature (units)				
Plower	Out Temp (units)				
Blower	Out Press (units)				
Heat Ex. Out	Temperature (units)				
Mid Gac	Temperature (units)				
	Pressure (units)				
Non Contact	Flow rate (gpm)				
cooling water	Totalizer (gal)				
	Temperature (units)				
Stack	Flow (units)				
	Pressure (units)				
AWS-2	(gal)				
Low Point Drains	(gal)				

Notes: _____

APPENDIX C

Quality Assurance Project Plan Addendum

C.0 QUALITY ASSURANCE PROJECT PLAN ADDENDUM

This Quality Assurance Project Plan (QAPP) Addendum serves as an addendum to the *Former Mather Air Force Base Sampling and Analysis Plan, Part II–Quality Assurance Project Plan* (MWH 2010). The QAPP presents the program procedures, objectives, functional activities, and specific quality assurance/quality control (QA/QC) activities designed to achieve established data quality goals. The Sampling and Analysis Plan (SAP)–Part 1 and the QAPP–Part 2 describe all quality-related field sampling and laboratory analysis activities that will be implemented during investigation activities. This QAPP Addendum details the specific guidance for the QA/QC of subsurface soil vapor and system monitoring sampling and analysis for Building 4260 (B4260, previously Site 59b).

Environmental measurements are made to produce data that are scientifically valid, are of known and acceptable quality, meet established objectives, and are legally defensible. This QAPP Addendum recognizes the responsibility to implement minimum procedures that assure the precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters of all data generated to meet the specified data quality objectives (DQOs). Throughout this addendum, specific procedural guidance is included. These procedures and their associated data collection and data tracking forms will be used to ensure the consistency and thoroughness of data generation and data integrity.

C.1 **Project Design and Rationale**

The Air Force initiated an investigation to further define the extent of volatile organic compounds (VOCs) contamination at B4260 and determine whether implementation of SVE to treat vadose zone VOCs was appropriate. The investigation and monitoring to be conducted as part of the SVE remedy includes sampling subsurface soil vapor around B4260 using the extraction wells of the SVE system and adjacent soil vapor monitoring wells.

C.2 Analytical Data Objectives

The data quality objectives for this effort are to install an extraction well that will help remediate the soil vapor contamination associated with the source area near the southeastern corner of B4260, and to collect sufficient samples and analytical data of known quality to ensure that the contamination is being reduced.

C.2.1 Quality Objectives

Specific QA indicators have been established for PARCC and QC measurements. These parameters are expressed as quantitative and qualitative statements concerning the type of data needed to support a decision, based on a specified level of uncertainty. Table C-1 provides the analyte lists, reporting limits, and precision, accuracy, and completeness objectives for Method TO-15. The criteria (predetermined acceptance limits) are expressed as numerical values for all laboratory analyses and field tests identified.

		TO-15	Accuracy Objectives	Precision Objective	Completeness
Reference		Reporting		Field Duplicate	Objectives
Method	Analyte	Limits (ppbv)*	LCS/CCV (%R)	Analysis (RPD)	(percent)
TO-15	1,1,1-Trichloroethane	5.0	70–130	≤30	≥90
	1,1-Dichloroethene	5.0	70–130	≤30	≥90
	1,2-Dichloroethane	5.0	70–130	≤30	≥90
	Benzene	5.0	70–130	≤30	≥90
	Carbon tetrachloride	5.0	70–130	≤30	≥90
	Chlorobenzene	5.0	70–130	≤30	≥90
	Chloroform	5.0	70–130	≤30	≥90
	cis-1,2-Dichloroethene	5.0	70–130	≤30	≥90
	Ethylbenzene	5.0	70–130	≤30	≥90
	Freon 11	5.0	70–130	≤30	≥90
	Freon 113	5.0	70–130	≤50	≥90
	Freon 12	5.0	70–130	≤30	≥90
	m,p-Xylene	5.0	70–130	≤30	≥90
	o-Xylene	5.0	70–130	≤30	≥90
	Tetrachloroethene	5.0	70–130	≤30	≥90
	Toluene	5.0	70–130	≤30	≥90
	trans-1,2-Dichloroethene	5.0	70–130	≤30	≥90
	Trichloroethene	5.0	70–130	≤30	≥90
	Vinyl chloride	5.0	70–130	≤30	≥90
	2-Propanol	20.0	70–130	≤30	≥90

 Table C-1

 Analyte List, Reporting Limits, and Analytical Data Quality Objectives

Notes: BOLD indicates main contaminants of concern

* = Laboratory-specific. These are approximate limits and do not take into account residual vacuum or dilutions. Method detection limits are at or below the reporting limits, but are not presented because they are instrument-specific.

%R percent recovery LCS = laboratory control sample =parts per billion by volume less than or equal to ppbv \leq == \geq greater than or equal to RPD relative percent difference = = CCV continuing calibration verification $\mu g/m^3$ micrograms per cubic meter = =

C.3 Analytical Support Level

Definitive data are necessary to determine the presence or absence of contaminants with a level of certainty. All samples will be submitted to the laboratory under this field effort with the objective of obtaining definitive data. As the analytical results of the field samples are reported by the laboratory, the data will undergo a validation process. This process will begin following receipt of the final analytical data reports in hard-copy and electronic deliverable formats. The project chemist will review the data in accordance with the U.S. Environmental Protection Agency's (EPA) *National Functional Guidelines for Organic Data Review* (EPA 2016). Field logbooks and chain-of-custody (COC) forms will be compared with laboratory results, for consistency and sample identification. Qualification flags, applied to the data during the validation process, will be incorporated into the database. Any rejected results will be brought to the attention of the QA manager and the Air Force project manager (PM), for review and suggested corrective action. Corrective action, depending on each case, may take the form of additional sampling, re-analysis, exclusion from use in the project database, or no action. Data that pass the validation process and meet the project DQOs will be considered definitive data.

C.4 Sample Collection and Quality Control

The quality of data collected in an environmental study is critically dependent on the quality and thoroughness of field sampling activities. Considering the sensitivity of analytical methods and the levels of detection specified for contaminant analyses, the sampling process becomes integral to the quality of data generated. Therefore, consistent, approved field operations and practices, and specific sample collection procedures will be followed.

C.4.1 Soil Vapor Sampling

All soil vapor samples will be collected in 1-liter canisters and analyzed for B4260 site-specific VOCs (see Table C-1).

C.4.2 Investigation-Derived Waste Sampling

Soil, purge or wastewater, or used carbon samples will be collected for waste characterization. Discrete soil samples(s) will be collected for VOCs by EPA Method SW8260B/C. A representative composite sample(s) of investigation-derived waste (IDW) (e.g., drill cuttings or soil excavated during trenching) will be analyzed for total metals by EPA Method SW6010B/SW7470A, at a minimum, for off-site disposal purposes. Wastewater or purge water will be sampled for metals and VOCs, if needed, for discharge to a groundwater treatment system or sewer outfall. Spent carbon will be analyzed by the toxicity characteristic leaching procedure for VOC analysis. All samples will be analyzed by a certified analytical laboratory.

C.4.3 Sample Containers, Volumes, and Preservation

The sample container, preservation method, and holding time requirements are shown in Tables C-2 and C-3.

Sample preservation is instrumental in maintaining the integrity of the samples from the time of collection until the analyses are performed. Therefore, the samples will be preserved during collection and storage, to prevent or retard degradation or modification of the chemicals in the samples. The preservation requirements are shown in Tables C-2 and C-3. For soil vapor samples, the canisters can be shipped at room temperature in a cardboard box or couriered to the laboratory. For water or soil IDW samples, all samples will be placed in ice chests and preserved at 4° Celsius. Samples will be shipped, delivered, or couriered within 2 days of collection.

					Tabl	e C-2			
Sa	mple Co	ntainer	and	Holdir	ng Time	Requirements for	r Soil V	apor Sam	ples
	D	4	C			77 1	D		77 1 14

Methods	Parameter	Sample Container	Volume	Preservative	Holding Time	
TO-15	VOCs	1-liter canister	1 liter	None	30 days	

Note:

VOC = volatile organic compound

Matrix	U.S. Environmental Protection Agency Method	Sample Container	Volume	Preservative	Holding Time
Soil	SW8260B	4 oz. jar	5 grams	4°C	14 days
Soil	SW6010B/SW7471A	glass	(1) 8 oz. jar	4°C	180 days/Hg 28 days
Carbon	TCLP/8260B	glass	(1) 8 oz. jar	4°C	14 days
Water	SW8260B	amber glass, Teflon-lined	(3) 40 ml VOA vials	HCl, pH<2, 4°C	14 days
Water	SW6010B/SW7470A	plastic	250 ml	HNO ₃ , pH<2, 4°C	180 days/Hg 28 days
Notes:	- hydrochloric acid		07 – 0110	Ce	

 Table C-3

 Sample Container and Holding Time Requirements for IDW Samples

HCI hydrochloric acid OZ. ounce VOA = volatile organics analysis Hg = mercury HNO₃ °C degrees Celsius = nitric acid = IDW investigative-derived waste < less than = ml = milliliter

C.4.4 Field Data and Sample Collection Procedures

Field data collection forms and sample collection procedures will follow the SAP (MWH 2010) and RI work plan (URS 2017). The purpose of these procedures is to obtain representative samples. Procedures that will be used for field and sampling activities are discussed in Section 2.0 and 4.0 of the RI work plan, Sections 3.0 and 4.0 of the design and operations and maintenance (O&M) plan for B4260, and in the sections below.

Field personnel will be responsible for the use and maintenance of field notebooks when conducting project-related fieldwork. Field notebooks provide a means for recording all data collection activities performed at a site. Field notebooks are intended to provide sufficient data and observation notes to enable participants to reconstruct events that occur during site activities. All entries need to be as factual, detailed, and descriptive as possible, so that a particular situation can be reconstructed without reliance on the collector's memory. Field notebooks are not to be used as a sole source of project or sampling information, nor should they be used for recording personal feelings, opinions, or any other inappropriate terminology. Field notebooks will be completed with consecutively numbered pages. Notebooks will be permanently assigned to field personnel.

The cover of each notebook will contain the following information:

- person or organization to whom the book is assigned;
- book number;
- project number;
- site name and number; and
- start date of notebook entries.

Entries in the notebook may contain a variety of information. At a minimum, notebook entries must include the following information at the beginning of each day:

- date;
- start time;
- weather conditions;
- county, state, and site address;
- all field personnel present and directly involved; and
- level of personal protection being used on site.

In addition, the information recorded in the field notebook is to include the following:

- a detailed description of sampling locations, physical parameters, and other field measurements;
- information on field QC samples (i.e., duplicates and trip blanks);
- observations about site and samples (e.g., odors, appearance);
- information about any activities extraneous to sampling activities that may affect the integrity of the samples (e.g., low-flying aircraft nearby, fossil-fueled motors being used nearby, painting operations being carried out upwind of sampling sites);
- equipment used on site, including time and date of calibration (equipment calibration also will be recorded in the calibration log book);
- maps or photographs acquired or taken at the sampling site; and
- forms used during sampling.

All notebook entries will be made in indelible black or blue ink. No erasures are permitted. If an incorrect entry is made, the data will be crossed out with a single strike mark, and then dated and initialed by the originator. Entries will be organized into easily understandable tables, if possible. The PM or PM-designee will review field notebooks from field operations for completeness and accuracy, on completion of the project.

C.5 Chain-of-Custody Procedures

Proper COC and sample tracking methods will be used during sample collection. These methods will include maintaining the documentation necessary to trace sample possession and the proper completion of standardized COC forms used to accompany samples shipped to the certified laboratory.

Field personnel (samplers) will be responsible for performing sample custody, documentation, and tracking tasks when collecting environmental samples meant for laboratory analysis. These personnel will be responsible for the care and custody of the collected samples, and for the proper and complete preparation of all sample labels and COC forms related to the samples until the samples are transferred or dispatched properly. During field efforts, custody will be maintained when an environmental sample is in any of the following conditions:

- in one's actual physical possession or view;
- in one's physical possession, and has not been tampered with (i.e., under lock or official seal);
- retained in a secure area with restricted access; or
- placed in a container and secured with an official seal so that the sample cannot be accessed without breaking the seal.

A COC form will be used as the sample custody and analyses specification document for all samples, from the time of collection to laboratory analysis.

C.5.1 Field Procedures for Custody Documentation

The following COC procedures will be implemented to maintain the samples and document sample possession:

- Samples will be collected as described in the Design and O&M Plan.
- The sampler (or person in possession of samples) will be responsible for the care and custody of the samples collected until they are properly transferred or dispatched to the analytical laboratory.
- Sample labels will be completed for each sample container, using block-printed text and indelible ink.
- When possible, all samples pertaining to one physical sampling location will be recorded on the same COC form.

C.5.2 Transfer of Custody and Shipment

Samples always must be accompanied by COC paperwork. When transferring the possession of samples, the individual(s) relinquishing and receiving the samples will sign, date, and note the time in the appropriate space on the custody paperwork. If the transfer occurs among the sampling team, the individual receiving the samples must document the range of sample numbers transferred to his/her possession in the "Received By" field. This act will document the physical transfer of the sample or group of samples from one sampler to another field person. When shipping samples by overnight courier, the individual in possession of the samples will relinquish the samples by signing, dating, and noting the time, and completing the "Received By" box with the courier name and air bill number.

All shipments will be accompanied by the appropriate custody and analyses specification document(s), identifying the shipment container's contents and analyses needed for each sample. The original documents will be sealed in a plastic bag and placed in an ice chest.

If sent by common courier or air freight, the air bill will be maintained. The method of shipment, courier name(s), and other pertinent information will be entered on the COC form.

The following information will be conveyed to the scheduled laboratory when samples are shipped:

- date shipped;
- number of samples by concentration (i.e., high, medium, low), if known, and sample matrix; and

• courier and air bill number.

Field personnel will notify the laboratory representative of Saturday sample deliveries, if necessary.

C.6 Quality Control Procedures

QC checks for field and laboratory sample analysis will be used to assess and document data quality, and to identify discrepancies in the measurement process that need correction. The collection and analysis of field duplicates and ambient blanks may be used for QC checks on the representativeness of the environmental samples, the precision of sample collection and handling procedures, and the accuracy of laboratory analysis.

Analytical quality control will be assessed using continuing calibration recoveries, method blanks, laboratory control sample (LCS) analysis, and laboratory duplicate analysis. These QC measures will be performed by the laboratory per method requirements. A summary of calibration and QC procedures is shown in Table C-4. The analytical laboratory will report any QC failures, such as calibration check samples that exceed control limits.

C.7 Data Quality Management

C.7.1 Data Handling Systems

The following sections describe the process for handling data in terms of data generation, review, and routing for field sampling data. The procedures identified in previous sections describe the recording of measurements onto data collection forms. This section discusses the monitoring and controls established to track field data through the following events: field form completion; and field review and correction.

C.7.1.1 Field Form Completion

Data collection procedures and instructions included in the SAP (MWH 2010) provide the guidance necessary to complete the field forms and analytical sampling paperwork involved with data collection activities.

C.7.1.2 Field Review and Correction

After completion of field data and analytical sampling paperwork, efforts will be made to ensure that the information recorded is accurate, complete, and legible. Data review and correction protocols have been established for both field- and office-specific data collection and processing. Technical personnel will document and review their own work and will be accountable for its correctness. The intent of the review is to ensure that all forms are complete, legible, and possess the required data elements.

If any document completion errors are found by the PM or a PM-designee during review of project documents, a correction process will be undertaken by the individual who discovered the error. If an individual discovers an error, the incorrect form will be sent to the individual best suited to correct the error. After the form has been corrected, it will, in effect, become the final version of the document, suitable for report usage.

QC Check	Minimum Frequency	Acceptance Criteria	Corrective Action
Tuning Criteria	Every 24 hours	TO-15 ion abundance criteria	Correct problem, and then repeat tune.
Minimum 5-Point Initial Calibration (ICAL)	Before sample analysis	% RSD \leq 30 with 2 compounds allowed out to \leq 40% RSD	Correct problem, and then repeat Initial Calibration curve.
Initial Calibration Verification and Laboratory Control Spike (ICV and LCS)	After each initial calibration curve, and daily before sample analysis	Recoveries for 85% of "Standard" compounds must be 70–130%. No recovery may be <50%. If specified by the client, in-house generated control limits may be used.	Check the system and reanalyze the standard. Re-prepare the standard if necessary, to determine the source of error. Re-calibrate the instrument if the primary standard is found to be in error.
Initial Calibration Verification and Laboratory Control Spike (ICV and LCS) for Non-standard compounds	Per client request or specific project requirements only	Recoveries of compounds must be 60–140%. No recovery may be <50%.	Check the system and re-analyze the standard. Re-prepare the standard if necessary, to determine the source of error. Re-calibrate the instrument if the primary standard is found to be in error.
Continuing Calibration Verification (CCV) for Standard compounds	At the start of each analytical clock after the tune check	70–130%	Compounds exceeding this criterion and associated data will be flagged and narrated, with the exception of high bias associated with non-detects. If more than two compounds from the standard list recover outside 70–130%, corrective action will be taken. If any compound exceeds 60–140%, samples are not to be analyzed unless the data meet project needs. Check the system and re- analyze the standard. Re-prepare the standard if necessary. Re- calibrate the instrument if the criteria cannot be met.
Continuing Calibration Verification (CCV) for Non-standard compounds	Per client request or specific project requirements only	Recoveries of compounds must be 60–140%. No recovery may be <50%.	Check the system and re-analyze the standard. Re-prepare the standard if necessary, to determine the source of error. Re-calibrate the instrument if the primary standard is found to be in error.
Laboratory Blank	After analysis of standards and before sample analysis, or when contamination is present	Results less than the laboratory reporting limit	Inspect the system and re-analyze the blank. "B"-flag for common contaminants.
Internal Standard (IS)	As each standard, blank, and sample is being loaded	(RT for blanks and samples must be within ±0.33 min of the RT in the CCV and within ±40% of the area counts of the daily CCV internal standards	For blanks: Inspect the system and re-analyze the blank. For samples: Re-analyze the sample. If the ISs are within limits in the re-analysis, report the second analysis. If ISs are out-of-limits a second time, dilute the sample until ISs are within acceptance limits and narrate.
Surrogates	As each standard, blank, and sample is being loaded	70–130% If specified by the client, in-house generated control limits may be used	For blanks: Inspect the system and re-analyze the blank. For samples: Re-analyze the samples unless obvious matrix interference is documented. If the %Rs are within limits in the re- analysis, report the second analysis. If %Rs are out-of-limits a second time, report data from first analysis and narrate.
Laboratory Duplicates–Laboratory Control Spike Duplicates (LCSD)	One per analytical batch	RPD ≤25%	Narrate exceedances : If more than 5% of the compound list is outside criteria or if the compound has >40% RPD, investigate the cause and perform maintenance as required. If instrument maintenance is required, calibrate as needed.
Notes:%R=percent recoveryCCV=continuing calibration verificICAL=initial calibrationICV=Initial Calibration Verification	LCSD =	Internal Standard laboratory control spike Laboratory Control Spike Duplicates quality control	RPD=relative percent differenceRSD=relative standard deviationRT=Retention time

Table C-4
Summary of Calibration and Quality Control Procedures for Methods TO-15

H:\Wprocess\Mather AFB\20471\B4260\Design-O&M\Draft\Apx C-QAPP.docx

C.7.2 Data Validation

Batch data validation will be performed on every work order (100 percent of the data). This will include review of analytical results, associated laboratory internal QC data, and field QC data reported by the analytical laboratory. All data generated will be assessed for PARCC parameters. The data assessment criteria for accuracy and precision are shown in Table C-1.

C.7.3 Data Reporting

Laboratory measurements will be recorded in standard formats that specify site location, sample identification, date, matrix parameter, parameter value, and reporting limit. Laboratory and field data will be combined and summarized in final tables and graphs that are appropriate to the type of data, and will convey information to support the findings of the data collection program. In all cases, data will be tabulated clearly and presented in a consistent way to facilitate comparison of common sets of data.

C.8 References

- Montgomery Watson Harza (MWH). 2010 (May). Sampling and Analysis Plan. Part I-Field; Part 2-Quality Assurance Project Plan, Sampling Plan, Former Mather Air Force Base. Sacramento County, CA.
- United States Environmental Protection Agency (EPA), 2016. Office of Superfund Remediation and Technology Innovation, *National Functional Guidelines for Superfund Organic Methods Data Review.* OLEM 9355.0-134, EPA-540-R-2016-002. September 2016.
- URS Group, Inc. (URS). 2017. Final Site 59b Remedial Investigation Work Plan, Former Mather Air Force Base, California. February.