Air Force Civil Engineer Center

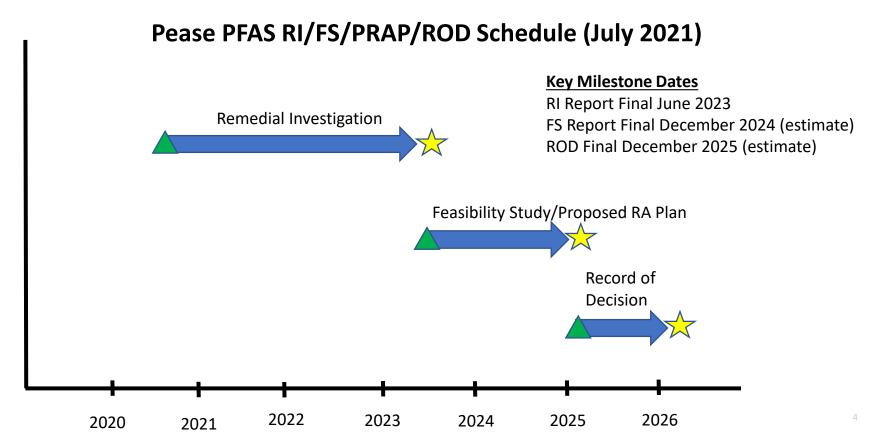
Pease RAB Meeting

Former Pease AFB, New Hampshire

28 February 2022

Agenda

- **Technical Check and Introduction of Presentations** Ona Ferguson (Consensus Building Institute)
- Pre-recorded Presentations
 - Air Force Cleanup Update Chris King (AFCEC)
 - Remedial Investigation Update Wood
 - **Drinking Water Facility Tour** Brian Goetz (City of Portsmouth)
- Welcome, Introductions, RAB Business Ona Ferguson (Consensus Building Institute)
- Open Discussion Time
- Public Comments
- Meeting recap and Next Steps Ona Ferguson (Consensus Building Institute)
- Adjourn


Private Well Update

- New DOD "Guidance on Using State Per- and Polyfluoroalkyl Substances Drinking Water Standards in CERCLA Removal Actions" released
- Allows DOD to consider NH Ambient Groundwater Quality Standards (AGQS) when addressing private wells
 - May result in additional private wells with PFAS above AGQS but below the EPA Lifetime Health Advisories (70 ppt of PFOS and PFOA) to receive removal actions
 - Can include connections to city water or installation of treatment systems
 - Any impacted residents will be contacted once implementation guidance is received
 - Bottom line: HUGE win for the local community and others impacted by DOD PFAS releases

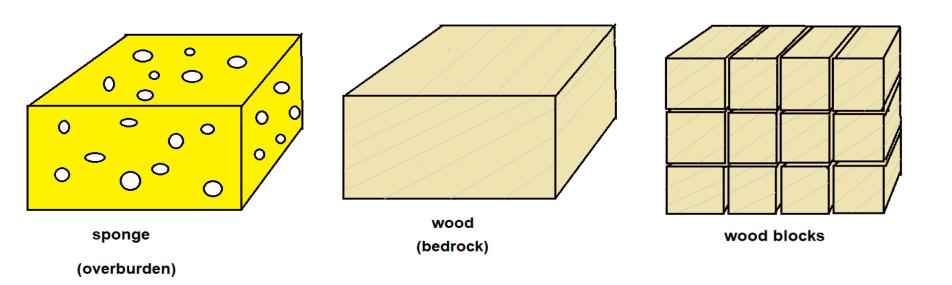
3

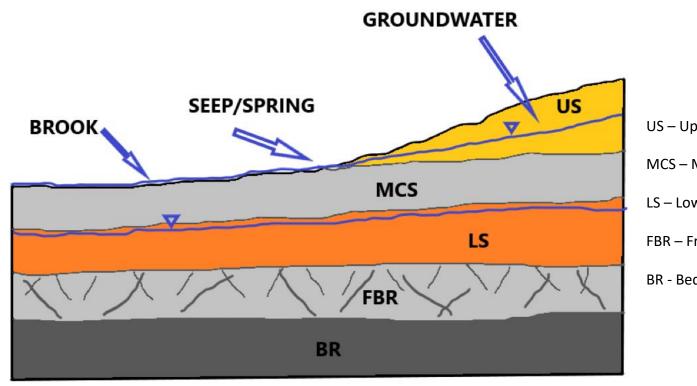
Remedial Investigation (RI) Schedule

RI Update

- Iterative process
- Groundwater Summary data validated up to this point will be presented (Hank Andolsek, Wood)
- Backyard Produce Summary validated data (Amy Quintin, Wood)

Overburden


Glaciers drop or push clay, silt, sand, gravel, cobbles, and boulders on top of the rock


Bedrock
Eroded deposits build up in layers in the ocean and become rock

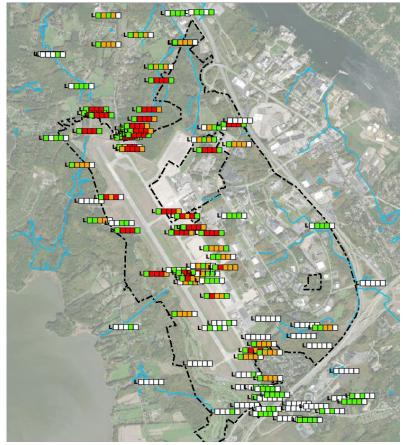
US – Upper Sand

MCS – Marine Clay Silt

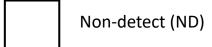
LS – Lower Sand

FBR – Fractured Bedrock

BR - Bedrock



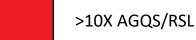
Coarse-grained outwash in braided channels (Sand and gravel) over weathered bedrock



RI Field Work – GW Figures – Box Plot Legend

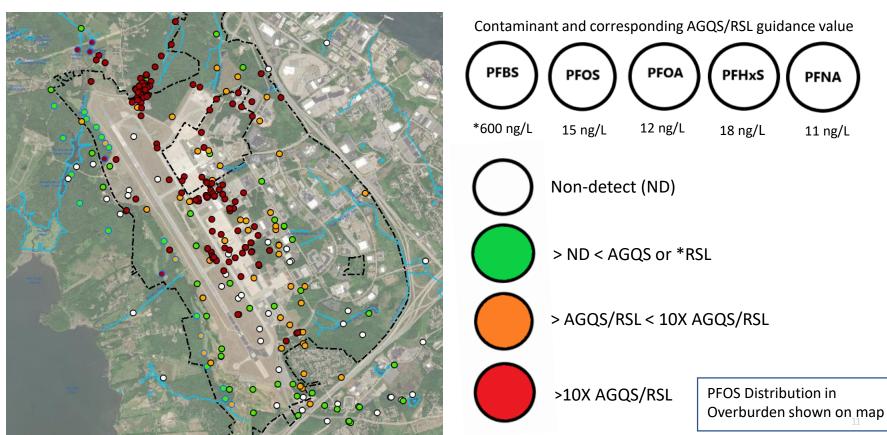
Contaminant and corresponding AGQS/RSL guidance value

PFBS	PFOS	PFOA	PFHxS	PFNA
*600 ng/L	15 ng/L	12 ng/L	18 ng/L	11 ng/L

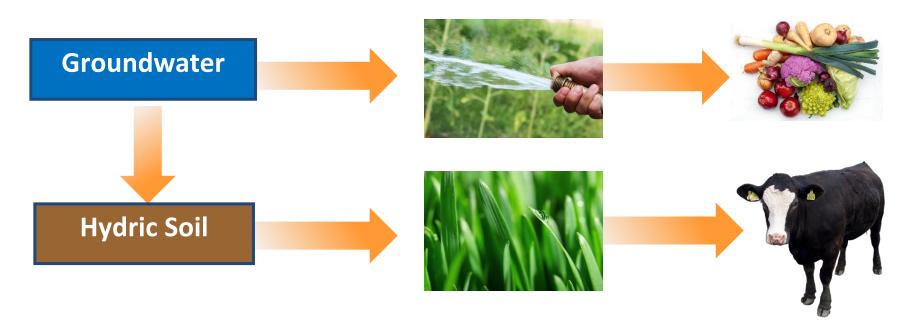

> ND < AGQS or *RSL

> AGQS/RSL < 10X AGQS/RSL

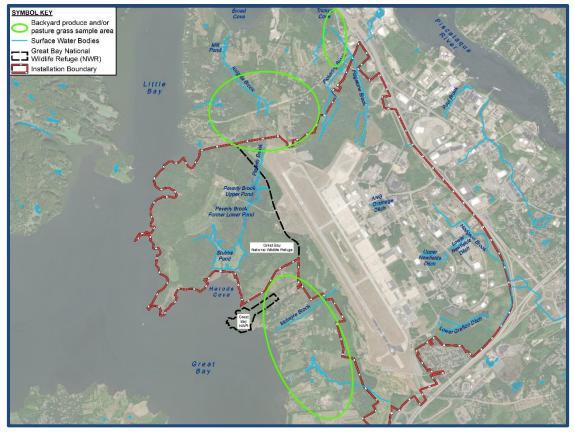
Letter indicates lithology


- **U** Upper Sand
- L Lower Sand
- O Overburden
- **H** Hybrid
- **F** Fractured Bedrock
- **D** Deep Bedrock

AGQS –NH Ambient Groundwater Quality Standard RSL – Risk Screening Level



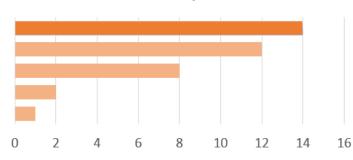
RI Field Work – GW Figures – Dot Plot Legend



Potentially complete pathways

- 12 Properties
 - Approximately 3
 samples of
 fruit/vegetable from
 11 gardens
 - Pasture grass from 3 farms
- Location selection = PFAS
 in private wells &
 residential
 input/questionnaires

	Results	What Does it Mea	an?
Fruit/ Veggie	No PFAS uptake from soil/water	No concern consuming fruit/veggie	
Pasture Grass	No PFOS/PFOA Uptake from hydric soils	No concern for eating beef cattle grazing on grass	



Produce Type: Vegetables eaten with skins sampled most often

Exposed Vegetable (skin eaten)

Dark Green Vegetable
Exposed Fruit (skin eaten)

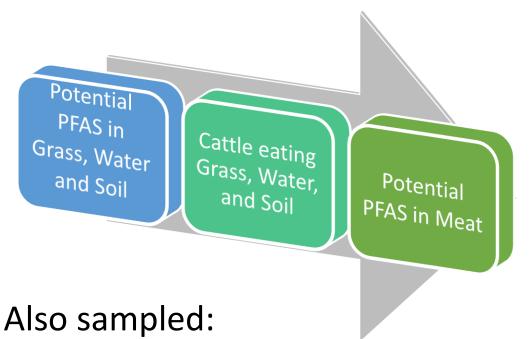
Root Vegetable
Protected Vegetable (rind removed)

No PFAS detected in fruits or vegetables

Exposed Vegetable: Tomato, Eggplant, Pepper, Cucumber, Summer Squashes

Dark Green Vegetable: Kale, Lettuce, Swiss Chard, Herbs (Sage, Basil, Mint)

Exposed Fruit: Apple, Strawberry


Root Vegetable:
Onion

Protected
Vegetable:
Butternut Squash

RI Field Work – Pasture Grass

 Hydric soil/ Groundwater/ Sediment/ Surface Water

3 Farms

- 8 Pasture Grass samples collected per farm
- In and out of active pasture

RI Field Work – Pasture Grass Results

Location & # Samples		Grass Results
Dry Soil	12	No PFOS/PFOA detected. One sample: 0.9 J μg/kg Perfluorobutanoic acid (PFBA)
Hydric Soil	11	No PFOS/PFOA detected. Two samples: Perfluoropentanoic acid (PFPeA) (0.8 J and 0.7 J $\mu g/kg$)
Sediment	1	PFOS, PFOA, PFBA, PFPeA, PFHxS and PFHxA detected

RI Field Work – Pasture Grass Summary

No PFAS in pasture grass in active pasture areas

PFOS/PFOA only detected in one grass sample in perennial water

Limited PFAS in 3 dry or hydric pasture grass samples

RI – Upcoming Results

- The next RAB meeting will include:
 - Soil, surface water, and sediment results
 - Shellfish, freshwater fish, and poultry eggs results

Remedial Investigation Timeline

Field work for the Remedial Investigation:

- Started in May 2021
- Scheduled into Fall 2022

Draft RI Report scheduled March 2023

End

