Air Force Civil Engineer Center

Pease AFB RAB Meeting

05 OCT 2016

- April Minutes approval
- Restoration Program Overview 2016
 Fieldwork Activities Snapshot
- PFCs at Pease AFB
- Public Comments
- RAB Operating Procedures

Environmental Restoration Overview

- Environmental Restoration underway since 1980s.
- Provided an overview in the spring.
- Did a site tour in July 2016.
- Tonight provide an overview of the fieldwork performed this summer.

Pease Restoration Project Team

Air Force COR: David Strainge

Air Force BEC: Peter Forbes

EPA RPM: Mike Daly

NHDES PM: Scott Hilton

PDA Point of Contact: Jared Sheehan

CB&I PM: Mike Quinlan

CB&I Field Manager: Marty Mistretta

Federal Facilities Agreement (1990) – Agreement between AF, EPA and NHDES that establishes procedural framework for investigation and cleanup activities.

Sites Map

2016 Restoration Program Snapshot

110 Groundwater wells installed

- 26 Permanent monitoring and/or injection wells
- 84 Temporary wells for remedial injections

Groundwater treatment at 6 sites

- In-situ enhanced bioremediation bugs eat contamination
- In-situ chemical oxidation chemical destruction of contaminants

1,907 Samples collected (348 PFCs)

- Sediment, surface water, groundwater, soil vapor/indoor air, and soil.
- Primarily volatile and semi volatile organic compounds, and metals
- 42 Documents prepared (3 PFC docs)
- 14,778 Man hours to date in 2016 (Excluding subs)

Groundwater Treatment Summary

Site ID	Contamination	Source	Treatment	Injection Volume (gallons)
Site 32	Chlorinated Solvents (TCE)	Aircraft Maintenance - solvent degreasing	In Situ Enhanced Bioremediation - (EVOS & SDC9)	18,669
Site 49	Chlorinated Solvents (TCE)	Communication Bldg solvent degreasing	In Situ Enhanced Bioremediation - (EVOS & SDC9)	33,226
Plume 41	Jet fuel related compounds	Part of Flightline Refueling System	In Situ Enhanced Bioremediation (sulfate)	24,000
Site 22	alkylbenzene group, benzene, naphthalene	Fire Training/Burn Pit	In Situ Chemical Oxidation (H2O2 & persulfate)	55,500
Site 10	benzene	Disposal of Gasoline Sludge	In Situ Enhanced Bioremediation (sulfate)	46,097
Site 36	benzene, naphthalene, chlorobenzenes, and TCE	Jet Engine Accessory Maintenance	In Situ Chemical Oxidation (H2O2 & persulfate)	18,130

- In-situ enhanced bioremediation bugs eat contamination
- In-situ chemical oxidation chemical destruction of contaminants

Site 49 – Former Comm Bldg

- 1998 Bldg Demo/Excavation
- 2000 Permeable Reactive Barrier
 - Zero Valent Iron
 - Deep OB and Shallow Bedrock
- 2000 2012 Performance Monitoring
- 2013 Phase 1 ISEB Injections
- 2013 Add'l Investigation
 - 12 Wells Installed
 - DNAPL Discovered
 - 26,400 ppb TCE in overburden well
- 2016 Phase 2 ISEB Injections
- 2016 2018 Performance Monitoring

Site 49 – Summer 2016 Fieldwork

Injections this summer

Site after injections complete

Site 22 Former FTA/Burn Pit

- **1997 2000** AS/SVE operation
- **2002** Soil Confirmation
- 2000 2012 Monitored
 Natural Attenuation
- 2013 2015 Add'l investigations
 - Delineate extent of GW contamination
- **2016** ISCO Injections
- 2016 2018 Performance Monitoring

Site 22 ISCO Injections

Site 32 – Bldg. 113

- 1996 Sheet Pile Installation & Groundwater Pump and Treat
- 2013 Add'l Investigation
 - DNAPL in soil
- 2014 Soil Excavation
 - Shut down extraction system
- 2015 Performance Monitoring
- 2016 ISEB Injections
- 2017 2018 Performance Monitoring

Site 32 Fieldwork (2014 & 2016)

Horizontal injection wells – bottom of excavation.

Mixing tanks for injection

Site 39- Bldg 227 Hangar

- 1996 Soil removal near SW corner of bldg.
- 1997 GW Extraction and Treatment
- 2015 GW ISEB Treatment
 - Injection wells installed
 - Shutdown Extraction System
- 2011 2016 Vapor Intrusion Investigation
 - Elevated PCE/TCE in subslab
 - One indoor air above screening value in 2013
- 2016 SVE Pilot Study Proposed
 - Address residual soil contamination.
 - Horizontal Well to be installed

April 2016 RAB Briefing

- Perfluorinated Compounds (PFCs) are man-made chemicals resistant to heat, oil, stains, grease and water
- Present in wide variety of residential, commercial and industrial products
- PFCs were used in firefighting foams starting in the 1970s
- 2009 EPA Provisional Health Advisory:
 - 400 parts per trillion for Perfluorooctanoic acid (PFOA)
 - 200 parts per trillion for Perfluorooctanesulfonic Acid (PFOS)
- In 2014, PFCs were discovered at Pease at levels above EPA's Provisional Health Advisory at the Haven Well
- City of Portsmouth took Haven Well off-line (May 2014)
- Air Force initiated an investigative program to better understand the location and extent of PFC problem at Pease
- Pease Fire Training Area (FTA) groundwater treatment system was modified and re-activated in Fall 2015

- May 2016, EPA issued new <u>lifetime</u> health advisory for drinking water:
 - 70 parts per trillion for PFOS, PFOA, and PFOS/PFOA combined
- May 2016, NHDES issued Ambient Groundwater Quality Standards for groundwater:
 - 70 parts per trillion for PFOS, PFOA, and PFOS/PFOA combined

PFOS + PFOA relative to new Health Advisory/Ambient Groundwater Standard

- City of Portsmouth has initiated PFC treatment on the Smith and Harrison Wells
 - Funded by the Air Force
 - Using granular activated carbon
 - Initial operating data will be used to construct a new treatment plant beginning in Fall 2017 that may eventually treat the Haven Well also
- Air Force has continued to sample the Smith, Harrison, Portsmouth and Collins Wells
 - 114 sampling events and 737 samples (supply wells, sentry wells and distribution points)
 - Concentrations are very stable no changes
 - Data posted to City website

City of Portsmouth Photo

PFC Investigation and Response Actions

Current Extraction Wells

Site 8 GWTS Optimization

Added carbon vessel

- 3 vessels in series
- To better manage breakthrough and prevent concentrations above the HA in effluent
- PFCs harder to treat than hydrocarbons
- Treatability Study coconut based carbon vs. coal based carbon
 - Coal based F400 is 2x more effective but costs 2x as much
- Coconut in lead vessel
 - Quick breakthrough biofouling
- Change out lead & mid vessel
 - Move polishing vessel to middle

Site 8 GWTS Optimization

Redevelopment of 8-5149

- Best producer accounts for bulk of flow
- Went from 11 gpm bulk treatment to 23 gpm continuous
- Increase frequency of change outs
- Every 2 months to address biofouling

Surge tool for well development

PFOS Carbon Results - April 2016 to July 2016

PFOA Carbon Results - April 2016 to July 2016

Total PFOS/PFOA Carbon Results - April to July 2016

PFHxS Carbon Results - April to July 2016

PFHxA Carbon Results - April to July 2016

PFBS Carbon Results - April to July 2016

PFBA Carbon Results - April to July 2016

- Site investigation reports for all identified AFFF use areas have been submitted
- Design of new treatment system at Fire Training Area is underway. Construction complete in fall 2017
 - 17 new wells installed
 - 4 pumping tests completed
 - Treatment technology pilot test complete
- Design of new treatment system to protect Haven, Smith, and Harrison Wells is underway. Construction complete in fall 2017
 - 50 new hydraulic testing points installed
 - 24 new wells installed
 - 3 large-scale pumping tests are being performed this fall

- Cleanup Challenges
 - Difficult to break C-F bonds
 - Very few examples of complete destruction
 - Beware of incomplete destruction
 - Successful technologies to date involve binding and separating the PFCs
 - Emergency response is the driver so far
 - Protect drinking water
- Proven treatment options are limited

Soil

- Excavation and encapsulation
- Incineration / thermal destruction
- Mixing/Binding

Groundwater

- Adsorption
- Flocculation
- Membrane filtration
- Chemical oxidization

To date, granular activated carbon (GAC) is the proven technology that has been deployed for large-scale response

- Air Force initiative to explore alternative treatment technologies
 - Several have shown ability to remove high levels of PFCs, but not to HA levels
 - 171 ppb PFOS+PFOA \$\improx 6 ppb PFOS+PFOA\$
 - Some can remove very low concentrations (less than 1 ppb) to PHA/HA levels
 - Few have shown the ability to do both
- Bench testing of an ion exchange resin indicated
 - Removal of PFCs to below detection limits (~ 6 ppt)
 - No breakthrough observed
 - >99% regeneration of media with solvent

Ion Exchange Resin Pilot Test

Bench Scale Testing (in the Laboratory)

Pilot Scale Testing (at the Fire Training Area)

- Resin demonstrated superior longevity to GAC, especially at removing sulfonic acids
- Resin has a greater capacity than GAC, with smaller vessels
- Resin demonstrated comparable or better performance than GAC at removing branched and shorter chain PFCs
- The resin was successfully regenerated
- Waste minimization opportunities
- Lower life cycle costs over GAC systems for PFAS treatment
- Some applications may allow for disposal media

RAB Discussion

Questions?

Public Comment

Goal: Provide opportunity for members of the public to comment.

Process: Public members fill out a comment card indicating they wish to speak. Statements are timed and are limited to 3 minutes for each speaker. The timer will notify the speaker when they have 30 seconds remaining and when they have reached 3 minutes.

<u>Outcome</u>: Questions will be answered in writing in Meeting Minutes and individually, if you leave us an email address

RAB Operating Instructions

Facilitator-lead discussion

