<u>AFCEC Environmental Restoration Innovative Technology Projects – AFWERX Partnership Projects</u> ## **Ongoing Projects** | <u>FY</u> | AFWERX ID | <u>Title</u> | Contractor/PI | <u>Synopsis</u> | |-----------|---------------|--|----------------------------------|---| | 2023 | FA864923P1266 | Molecularly Imprinted
Polymers for a Real-
Time PFAS Sensor | Aquggua
Dr. Brian
Pinkard | The project is developing Molecularly Imprinted Polymers for a Real-Time PFAS Sensor. Using molecularly imprinted polymers (MIPs) has shown promise in rapidly sensing/detecting PFAS with practically relevant compound selectivity and measurement sensitivity. | | 2022 | FA864923P0026 | A Green Antibiofilm
and Antifouling
Solution for Water
Treatment in the DAF | AEQUOR
Dr. Cynthia
Burzell | Develop and validate a bacterial treatment with minimal effect on the binding capacity for PFAS species of FLUORO-SOB (FS400). | ## AFCEC Environmental Restoration ITP-AFWERX Partnership Projects ## **Completed Projects** | <u>FY</u> | AFWERX ID | <u>Title</u> | Contractor/PI | <u>Synopsis</u> | |-----------|---------------|--|-----------------------------------|---| | 2023 | FA864923P1125 | Sustainable, Non-
Incineration-based
Destruction
of Air Force Hazardous
Waste Stockpiles | AxNano
Dr. Alexis
Carpenter | AxNano developed a proprietary automated feed system that is used in conjunction with supercritical water oxidation (SCWO) to eliminate hazardous waste disposal risk, including PFAS. This technology can be deployed for public and private entities across the globe. While "forever chemicals" are making headlines, DAF needs a waste management overhaul for both emerging and existing hazardous wastes. |